THEe

aLrernare
source

Volume l

= L — "1.""-'-'--‘— e AT iy e ; =
el O - - _— - ‘ll'-"'-ll'-ll-_.___."'"_"'.,i—.--—-.- e e Wl T T ————
L
SA

The magazine

of advanced
applications and
software for the

TRS-80.

TABLE OF CONTENTS

Bootstrap 172
Help For The Single Drive Ownerooovuun.... 1/3
Pork Barrel Reviewoooviiiiiin i 1/4
Make Data ... 1/5
Bulletin Board i 1/7
From The Source’s Mouthccooiiiii e .. 1/8
I S 1/10
Embed Machine Language In BASIC......................... 1/11
Cursor Control 1/12
Documento 1/17
Byte Packer 1/18
Hangman....... 1723
VTOS 3.0 Commentaryooviiiiiiiiiiinnnnnnnn... 1/24
Last Minute Odds & Endsccouiuuinnennnnnnnn... 1/26
InThe Buffer... ..o, 1727
Editorial RAMbling i i 2/2
NoFrills oo e 2/3
SoUNdEX -\t e e 2/8
T 2/14
Bulletin Boardot e, 2/15
ESF Review . ..uuuniiiiiiiii it e e e e eean 2/17
O T 2/19
Diskmapoiiiiiii i 2/22
Patch Worko i e e 2/25
STV ot e e 2/26
Going For Brokeot 2/27
Erratao 2/29
From The Source’s Mouthciiiiiiiinnnnnnn.. 2/30
Ramstuff i e e 2/31
Odds & Ends ..o 2/38
InThe Buffer.......ooiiiiiiiiiiii e 2/39
Editorial RAMblingttt 3/2
Hands Off e e, 3/3
Real B S. ..o 3/6
An Alternate Video Displayc..coiiiiiiaa... 3/7
L 1o 3/11
Power-Up ...t e 3/14
Mystery Programottt 3/20
SUIVEY ot e e 3/22
Microdos Reviewoiiiiiiiiiiiii it 3/25

Bulletin Boardoiiiitiiiiiit i ieeaaaaannns 3/28

(continued)

TWODISK © ittt it it ieteeeeeesanansenasassaansnasssans 3/31
From The Source’s Mouthcvviiiiiiiiiiiii i 3/35
VARP TR . ittt ittt it eneenecnerasesassaasanssanes 3/36
Odds & ENAds «vvvveiniiiiiieieeeesnenenieseennsnaeaanaens 3/43
Editorial RAMblingouiiniiiiiiiiiiiiiiiiiiiiiia 4/2
Power-Up .ovveinii i 4/3
In-Memory Sorting Using GSFo oiiiiiiiiin, 4/10
1G] | P PRI 4/15
Teach Your TRS-80 to Talk A 4/24
Bit W IES v e tee s e te it cieeesasnsneaenasansocnsnsenannnans 4/26
Bulletin Board .. oo viiitiii it ittt 4/29
Computing Elapsed Timecooiiiiiiiiiiii.. 4/31
T = AP R PR 4/32
Superzap Patchesoooviiiiiii 4/33
Direct Statement In File oottt it 4/34
From The Source’s Mouthccoviiiiiiiiiiiiiiian., 4/36
Menu POWer v oii i ittt it ieeee e aseraensenenanneans 4/38
BOOT/SYS.WHO Explainedcoiiiiiiiiiiiie.s, 4/40
VARP TR ettt it ittt ettt tat i 4/41
LADESEE & vttt is ittt eteacasesaannsneencacnsnnesnnnnaans 4/49
Odds & Ends «oovitniinieieiieee e easacenennananeeaennas 4/51
Editorial RAMbling ...covvvrriiiiiiiii it 5/2
Let Your Fingers DoTheooooiiiiiiiiiiiint, 5/3
0T o R R 5/12
Bit Kickin’ With Jesse Bob. ... ivvniiiiiii i, 5/24
OUL Of SOTES « vttt eete e eseaensaossessnensnasnsonennas 5/28
POmTam & v et ee et ee ettt e enesasaeneaatsensanonseanenans 5/31
From The Source’s Mouth ... eiiiii it i, 5/50
NEWDOS/80 ReVIEW v vvviveiienieeneanseenransenessennas 5/52
Editorial RAMblingcoviiuriiiiiiii e 6/2
Through The Ins and Outs of Tape............ooviiiiii.an. 6/3
Another Way to Install Machine Language 6/15
DIRBASIC vttt ittt ettt eneetetaataenraacaannns 6/20
Making Your Machine Language Programs Relocatable 6/33
From The Source’s Mouth ..o, 6/39
Bit Kickin’ With Jesse Bob.......coviiiiiiii it 6/41
VTOS 4.0 ReVIEW .+t vvvtenrnneneeasnseosannensnsasannenns 6/45
Undocumented Z-80 Opcodesooiuveiiiii i, 6/53
COMEESE « v o veeesenesnenenenasasassesnsssseesensnnonnnanaes 6/55
Floating Point USRooiiioiiiiiiiiiiiiiiiiinn 6/57

Speeding Up a Sequential Search...............coooiiniin. 6/60

PREFACE

Things were not progressing fast enough for this TRS-80 owner during
the summer of 1979. Articles for the TRS-80 were few and far between in
the 'REAL’ publications. There were at least a half dozen magazines
devoted to the TRS-80 -- some appeared only a few times, if at all. Some
supported the games crowd. Others were ’beginners’ magazines that, if
anything, were a drag to read.

I felt that there should be a source of information for those who had
mastered the delicate art of CLOADing; those who didn’t feel entirely
incompetent after booting up DOS -- yet realized the existence of many
worlds yet unconquered.

If The Alternate Source were directed to one particular group, [would
suggest that it be the’systems analyst’ at each TRS-80 installation (though
humble it may be!). In order to fully utilize a system, there must be at least
one person who understands the basics of the system: CLOADing versus
SYSTEM loads, subtle differences between Level Il and Disk BASIC, a
general familiarity with the various software components in memory at
any given time and how they interrelate, or any number of a thousand
other minor ‘rules and regulations’. Before we can truly test the limits of
any system, we must understand the rules -- then we can break them!
That’s where TAS plugs in.

We have yet to implement many of our initial goals (some are being
worked out even as I write this!). For this reason, many have labeled us as
a’Z-80 Assembler’ journal. We're not ashamed of this, by any means, but
our collective vision encompasses so much more. As you view the articles
in this collection, I hope you find as much valuable information as I have.
You will at least experience the growth of a magazine.

Charles W. Butler,
Publisher

One word of caution: This compilation was made from original copies
of early issues. Some of the advertisements may not be in effect, for
various reasons. We suggest that you contact any company with an
attractive ad for current availability.

A heartfelt thanks to all who have supported TAS for the past months.
It is only with your help that we can continue to grow and serve.

May 1981

The Alternate Source is published by Charles W. Butler and Joni
M. Kosloski at 1806 Ada Street, Lansing, Michigan, 48910.
Subscriptions are $18.00 for twelve issues; $12.00 for six issues
USA; $24.00 and $15.00 for Canada and First Class subscriptions;
and $36 for twelve issues overseas ($48.00 for airmail). All
monies must be in U.S. currency. Subscriptions may be
addressed to the above, as well as any advertising rate inquiries.
We actively solicit meaningful articles and information relating
to Tandy’s I and 111, and compensate for each article published.
Call or write for more information.

The entire contents of this book and each Alternate Source
magazine are Copyright (c) (p) 1981 by The Alternate Source
unless copyright notice is declared by individual authors.

TWO DOLLARS VOLUME 1, NUMBER 1

THE
ALTERNATE
SOURCE

A COMPENDIUM OF INFORMATION TO ENHANCE THE USERS
ABILITY TO EFFECTIVELY UTILIZE THE RADIO SHACK TRS-80
MICROCOMPUTER, LEVEL Il AND ABOVE.

IN THIS ISSUE:

PAGE
BOOTSTRAP™ .. ittt it 2
HELP FOR THE SINGLE DRIVEOWNER 3
MAKE DATA e 5
FROM THE SOURCPS MOUTHccoivvinn... 8
EMBED MACHINE LANGUAGEINBASIC 11
CURSORCONTROL ..ot 12
DOCUMENT ... e it 17
BYTEPACKER it 18
HANGMAN i ettt 23
LASTMINUTEODDS & ENDSccoiiiineennnn. 26
INTHEBUFFER it 27

Regular Reviews:
Software Review — 4 & 24, Bulletin Board — 7, Letters — 10.

ALL TRADEMARK ACKNOWLEDGEMENTS ARE ON PAGE 26.

THE ALTERNATE SOURCE JANUARY, 1980

BOOTSTRAP

Welcome to the first issue of The Alternate Source News. Undoubtedly,
no issue of any publication can be as complicated as the first. Everything has to be
done! We've lucked into some pretty special people while trying to put this together.
Al of them have helped better this product for you.

Not the least of our problems was what format in which to present the
information. We want to keep it consistent...too many publications start one way
and then change, just about the time you get used to the way they do things. We
decided on 5% x 8% for a couple of reasons:

1. With the price of paper rising every day, we want to hold our own
against it for as long as possible. Our subscription prices reflect the most recent in-
creases to our printer, and, barring some unexpected shortage of materials {we don't
get paper from lran, do we?) we can pretty much guarantee price stability for our
first year of publication. Planned expansion is in the thickness department, instead
of length by width.

We've made allowances on our binding margin for people who would like
to punch the mag for ring binder storage.

2. While we would like to appeal to everyone, our main target area is for
persons who have already climbed the hurdles necessary to be ranked ‘beginner’ and
are ready to move into the ‘intermediate’ and "advanced’ categories. Several of the
major publications, both exclusively TRS-80 and otherwise, have already proclaimed
their support for the beginner. We feel there is a group of TRS-80 owners at least
slightly more intelligent than some of the articles appearing give them credit for--thus
we will project our magazine at this more intelligent creature. Our desire is to be an
Alternate resource to persons who have exhausted the conventional info media. De-
pending on our timing, resources, and our ability to entice enough people to partici-
pate, this may prove to be quite a job~and expensive. By allocating less funds to the
printer, we can compensate authors better, ideally attracting a higher quality of in-
formation for all.

3. Five and one-half by eight and one-half is working pretty good for TV
Guide, Readers Digest, and IASFM. We feel they make pretty good company.

A special thanks goes to THE LANSING STAR, Mid-Michigan’s ALTER-
NATE newspaper, for working out an arrangement for us to use their IBM Composer
for typesetting. We had tried using the Electric Pencil, but it inadvertently jumped
to Level ll Basic once too often.

For your general information, any material in this publication not other-
wise credited is the work of Charley Butler and Joni Kosloski with idea stimulation
and valuable feedback provided by Dennis Kitsz and CMTUG members Allan Moluf,
Bill Brown, Gordon Williams and Dan Poorman. We welcome your comments, criti-
cisms, evaluations, complaints and information.

We've received some very good packages in our marketing department and
have been very busy getting all the loose ends tied up-not to mention readying a
magazine for publication! Our special thanks to the people who have responded to
our requests for articles and information. We were scared that development of every
issue would completely be an in-house thing. So far, this hasn't been the case. A
quest for endurance is second only to quality.

page 2

THE ALTERNATE SOURCE JANUARY, 1980

HELP FOR THE SINGLE DRIVE OWNER

When Radio Shack released their 2.2 disk operating system last summer, it
contained a couple of utility programs to allow single drive owners to convert their
machine language files to DOS 2.2. Only once did | try to use the ‘'GETDISK/BAS’
program. | was going to convert one of my Fortran modules to 2.2. Things went
fine until ‘GETDISK/BAS' told me | would need 22 ten minute cassettes to transfer
this one module! The Microsoft Fortran package has four huge modules, not to men-
tion several auxiliary routines! | didn’t even bother to calculate the time necessary
to convert any of my other machine language programs. 1 had neither the time nor
the cassettes,

It seemed pretty logical that most people wouidn’t have many machine
language files larger than their RAM, so why not use memory to transfer the files?

Needless to say, it works like a charm...which is why you're reading it
here! Some additional benefits: it can be used not only to transfer 2.1 machine
language files to 2.2, but can also be used to transfer 2.2 (or greater) files from disk-
ette to diskette. Just before submitting this article, | added routines that will allow
you to loop and save the same file on more than one diskette.

Some cautions: this program is designed to be run with 2.2 or 2.3 DOS or
possibly any DOS with 256 byte record lengths. To my knowledge, neither VTOS,
NEWDOS, or 2.1 has this. Thus, make sure your operating system was booted from
a 2.2 or 2.3 diskette.

Also, wait for the ‘insert destination diskette’ prompts before you change
diskettes. This will make sure all files are closed properly. In case you haven't exper-
ienced it yet, improperly closed files will result in improperly updated directory
tracks, which will in turn result in lost files--invariably they will be the ones you least
expect to go, and most want to keep (Murphy’s Law).

You certainly don’t need to hurry. You can probably back up every ‘sys-
tem’ file you have twice (!) while one cycle of ‘GETDISK/BAS' is executing!

TRANSFER Program Listing

25 CLEAR15000:DEFSTRF,R:DEFINTI:CLS

50 INPUT”FILENAME TO BE MOVED"”;F:OPEN"R",1,F:DIMF2(LOF(1)*4)

75 FIELD1,255ASREC,1ASR1:12=1:13=4:14=1:19=LOF(1)

100 FORI=1 TOI9:GET1,I:PRINT@640,”GETTING RECORD"":1

125 FORI1=12T0I3

150 F2(11)=MID$(REC,14,64):14=14+64

176 NEXTH:F2(13)=F2(13}+R1

200 12=13+1:13=12+3:14=1:NEXTI

225 CLOSE:INPUT”INSERT DESTINATION DISKETTE";l

250 INPUT”DESTINATION FILE (ENTER=SAME AS SOURCE FILE)";FD:

IFFD=""FD=F:0PEN"R",1,FD

275 FIELD1,64ASR1,64ASR2,64ASR3,64ASR4:11=1

300 FORI=1TOI9:PRINT@640,"WRITING RECORD NUMBER"; 1

325 LSETR1=F2(11): LSETR2=F2{11+1): LSETR3=F2(11+2): LSETR4=F2(11+3)
{continued on page 25}

1/3

THE ALTERNATE SOURCE JANUARY, 1980

We're really proud to announce this issue that Dick Clope of the *80 Software Cri-
tique has supplied us with reviews of some game software. The *80 Software Cri-
tique is dedicated to supplying TRS-80 owners with factual reviews--each program
is summarized, then rated on the following scales: Fun, Originality, Bugs, Instruc-
tions, Technique, and Dollar Value. Each issue also contains the top ten programs of
the quarter, several comments to authors and users, fixes for some packages that con-
tain bugs, as well as various other features. The current issue features mostly games,
and the list of reviews for the second issue contains programs from several of the top
software producers, including Automated Simulations, Hayden Books, Personal Com-
puting, Instant Software, Acorn Software, DOG, Creative Computing, and several
others. 1’m looking forward to it!--ed.

PORK BARREL

Program by Rev. George Blank for Level 11, 16K
Available from TRS-80 Software Exchange for $9.95

This game is a political simulation. One to four players can play, and the
object of the game is to keep your seat in the House of Representatives. You must
continue to he re-elected in order to continue in the game. Your Congressional Dis-
trict consists of the following precincts with a total of 340,000 registered voters:

1. Professionals 10,000 2. Technical 30,000
3. White Coliar 60,000 4, Defense 25,000
5. Industry 50,000 6. Service 50,000
7. Farmers 15,000 8. Retired 40,000
9. Unemployed 20,000 10. Welfare 40,000

You are also provided with the current unemployment rate--around 8%.
Each government department brings its budget to Congress for approval. You are
provided with the departments’ budgets for the last year, and you must then decide
how much money to provide for next year.

Several House Bills are then presented. For each Bill, you are given infor-
mation on public opinion polls and how each special interest group feels about a
given Bill. You then vote on each Bill and you are provided with the results of the
roll call vote. On some Bills, the President will inform you that he expects you to
vote his way on the Bill.

When election time comes, you must decide how te spend your campaign
funds. Ten different advertising media are available for your funds. The results of
the election are then presented. You can see which groups of your constituents were
pleased with your performance and which groups weren’t. If you were re-elected,
you continue playing. This game came without instructions. They should have heen
provided.

Summary: This is an excellent game. The strategy would be better under-
stood if instructions were included. The game accepts improper input on the roll call
voting. We accidentally pushed the ENTER key several times without entering a
command, and never were sure how we voted on that particular Bill.

174

THE ALTERNATE SOURCE JANUARY, 1980

MAKE DATA
{A way to merge your Machine Language and Basic programs! ed,)

CMTUG is blessed with one ‘resident genius’, Mr. Allan Moluf. Allan ori-
ginally contributed the following program to CMTUG News. As with most resident
geniuses, Allan’s time is rather limited, yet when asked to contribute something, he
usually manages to find a few table scraps-—-to us, they materialize as a feast! Having
a ‘resident genius’ to ponder your immediate problem can have a more exhilarating
effect than all the periodicals on the market. Speaking especially for The Alternate
Source, and most probably for CMTUG, whether Allan is directly responsible or not,
a substantial number of good ideas recently evolving in this area have felt and appre-
ciated his guiding hand.

Due to the last minute urgency that frequently pops up in journalism, the
following program originally had a couple of bugs. They have now been worked out
and the following is a listing of the actual working program.

But What Does It Do?

Glad you asked. A fellow member of CMTUG had a particular situation
where he wanted to merge a machine language routine with a Basic program. At the
same time, he wanted to keep the operation simple. This program creates data state-
ments from the machine language routine you want to merge, as well as a routine for
reading them and poking them into the proper memory locations. The line number
of the routine starts at 60000, which should be high enough for most Basic programs;
if not, change the value of 'S’ in the initialization routine.

If you want to use the routine by itself, you may want to throw in a line
similar to: 59000 GOSU B60000: VARIABLE=USR(0):END

A word of advice--when you use a machine language routine which over-
lays the Basic program at some point, you may want to avoid potential problems by
finding the beginning of free memory (PEEK 16633 and 16634). Most Basic pro-
grams start at 27171; the following program will print out the starting location of the
machine language file. These addresses are for Dos.

With a little thought and a bunch of hard work, this program could be con-
verted to Level Il. A possible approach would be to load the machine language rou-
tine into memory and PEEK the memory locations it occupies, to get the 'data’ to
create the new program. Good luck.

Allan Moluf is also the author of the machine language DVR and COPY-
DISK programs offered by The Alternate Source.

nnnnnnnnnnnnnn

Program Listing

0 REM MAKEDATA V1.22 -- 1979 OCT 18, 22:00

90 CLEAR1000: DEFINT A-R,T-Z:DEFSNG §

100 LINEINPUT"FILE NAME?";F$:0PEN"R",1,F$+"/CMD":
LINEINPUT"DATA FILE?";D$:IFD$=""THEND$=F$

105 OPEN"0",2,D$+"/DAT"

110 FIELD1,255 AS 0$

120 N=VARPTR(0$): Q=PEEK(N+1)+256*PEEK(N+2)

130 X=0:5=60000:51=10: GOSUB3000

1/5

THE ALTERNATE SOURCE JANUARY, 1980

140 P=256:R=0:A=1
150 GOSUB1000:T=C:GOSUB1000: L=C:
PRINT’REC”;R;” POS";P;” TYPE";T;” LEN";L;
160 IFT=2G0T0250
ELSE IFT<>1THENPRINT"~-1GNORED--":P=P+L:GOTO0150
170 GOSUB1000:B=C:GOSUB1000:1FC > 128THENC=C-256
180 B=B+256*C:IFB<YA
THENA=B:C= -1: OSUB2000: C=B:G 0SUB2000
190 PRINT” ADDR":B: L=L-2:IFL< =0THENL=L+256
200 GOGSUB1000:GOSUB2000:L=L - 1
IFA<>32767THENA=A+1ELSEA= -32768
210 IFL > 0GOTO200ELSEGOTO150
250 GOSUB1000:B=C:GOSUB1000:1FC > 128THENC=C-256
260 B=B+256*C:PRINT” END”;B
270 C= -2:G0SUB2000:C=B: G 0SUB2000
280 IFX<>0THENPRINT#2, " "
290 CLOSE 2
300 END

1000 IFP > 255THENP=P-256:R=R+1:GET1,R:GOT01000
1010 C=PEEK(Q+P):P=P+1:RETURN

2000 IFX=0THENX=10:
PRINT#2, MID$(STR$(S),2);” DATA";:S=S+10
ELSEPRINT#2, ", ";

2005 IFC < OTHENPRINT#2." ”;

2010 PRINT 2,STRS$(C);: X=X -1

2020 IFX=0THENPRINT#£2,” "

2030 RETURN

3000 PRINT#2,MID$(STR$(S),2);” READ B: ON ERROR GOTO";
$+6*51:5=5+81

3010 PRINT#£2,MID$(STR$(S),2);” IF B =-2 THEN READ A:
DEFUSRO=A:RETURN":8=8+S1

3020 PRINT#2,MID$(STR$(S),2);” IF B<>-1 THEN STOP":S=5+§1

3030 PRINT#£2,MID$(STRS$(S),2);” READ A: A=A-1":5=5+51

3040 PRINTH2,MID$(STR$(S),2);" READ B: IF B< 0 GOTO";S-3*81:5=5+S1

3050 PRINT#2,MID$(STR$(S),2);” IF A> 32767 THEN A=A-65536: GOTO"
MIDS$(STR$(S),2);” ELSE A=A+1: POKE A,B: GOTO";S-51:8=5+51

3060 PRINT2,MIDS(STR$(S),2);” IF ERR/2+1=23 AND ERL=";8-5*S1;

” GOTO ~;S+2*51:5=5+81

3070 PRINT#£2,MID$(STR$(S),2);” PRINT”CHR$(34),” ** UNEXPECTED
ERROR, LINE=";CHR$(34);” ERR/2+1;ERL:STOP":5=5+S1

3080 PRINT#£2,MIDS$(STR$(S),2);” POKE 16526, A AND 255: POKE 16527,
(A/256) AND 255: RESUME";$+81:8=5+81

3090 PRINT##2,MID$(STR$(S),2);” RETURN":S=8+51:RETURN

A special note when running this program: Notice that the program as listed wants
only the first eight (or less) characters and that it assumes the extension “/CMD"".
You may wish to modify lines 100 and 105. If you respond to the line-input WITH
the extension, the extension will also be used to open the data file-thus messing up
the EOF markers for the original /CMD file!

1/6

THE ALTERNATE SOURCE JANUARY, 1980

BULLETIN BOARD

Gadzooks! There are a number of people that have a need for various
types of specially designed programs. Whether your business is programming, or has
a need for programming, why don’t you let us know? Perhaps we can match you up
with someone who has complimentary needs or abilities. Address your info to TAS,
Special Services Dept., 1806 Ada Street, Lansing, Ml 48910. We would like to get
responses from all over!

La a2 2L 22 L s T Y

The Marfam Company has developed its own accounting and inventory packages
hased on the Hawley-Walz method of accounting which is fully interactive with the
ledger (inventory works through receivable unit). Interested persons should contact
the Marfam Company at 6351 Almaden Road in San Jose, CA. Zip is 95120.

bt LS 22 2 Y Y

Murname and Associates now have available three quick reference guides. For just
$1.95 you can purchase either the TRS-80 Level | Basic Quick Reference Guide or
the TRS-80 Level Il Basic Quick Reference Guide. The third guide is Microcomputer
Basic Quick Reference Guide, and costs 95 cents. The guides are small, well-organ-
ized, and contain information necessary to answer most questions programmers have
(i.e., edit commands, Basic commands, ASCIl codes, etc.). Write to Murname &
Associates at 1056 Metra Circle, Palo Alto, CA. Zip is 94303.

HHH IR KRR KK
We currently have requests for information pertaining to the following:
A job-costing program for a furniture & floor covering business
A payroll program that DOESN'T require you to write checks
A bug-free, rule-following cribbage game

A program that will calculate the right-justification codes for an
IBM Composer

Any information that will assist someone in making the Small System
Software R$S232 interface work with non-SSS CPM and a Datel
printer--needed desperataly!

R eI KN

The Alternate Source will list your specific wants and needs on the Bulle-.
tin Board for a $2.00 handling charge. New product listings are free, but, when fea-
sible, we do require a sample of the product (will be returned if requested).

177

THE ALTERNATE SOURCE JANUARY, 1980

FROM THE SOURCE'S MOUTH

The whole concept behind The Alternate Source originated with us in Oc-
tober, 1979. Between that time and now, quite a few interesting things have tran-
spired.

In mid-November we went to the printer and ordered 2500 copies of our
freshly typeset promo letter. Only AFTER we got them back did we discover a
glaring syntax error in the actual letter portion. We were trying to relate that we
wanted to share IDEAS with you; instead it read as if we wanted to share hassles!
No way. Our goal is to eliminate hassles. Everybody around this place is walking
around with one arm about two inches shorter than the other. Remember when the
teacher had you write 1000 times, ‘I will not chew gum in class'? It was worse,
trying to correct those 2500 copies! Oh, well, Let's talk ahout something more
pleasant...

Those of you who didn’t receive our promo letter probably saw our flyer
in the TCS Newsletter. Between now and March, our ads will be appearing in at least
five magazines, three of them exclusively TRS-80 publications. We've been trying to
keep our advertising budget to a minimum in order to hold costs down, but we have
to make ourselves known somehow. Our hats are off to the folks at TCS who have
helped us both ways!

Moving on--| recently had the pleasure of visiting a gentleman here in town;
he's the proud owner of an Exidy Sorcerer. |don’t blame him for being proud--he’s
yot it trained so that when he loads a particular program the beast comes back with
“MEMORY SIZE?”. After a carriage return, "RADIO SHACK LEVEL Hl BASIC".
He's working on DOS, | presume.

The highlight of the evening was a call to California. We had a modem
hooked up to the RS232 and the Exidy. We were on line with the TRS-80 Users
Group in Orange County for thirteen minutes, and filled a good portion of the Ex-
idy's 52K of memory with information from their net. We figured the cost of the
call to be about $2.12, better than the price for some newsletters! Needless to say,
I'm real excited about The Alternate Source going on line-just think! You'li be able
to call and get your software packages immediately! Author submissions will be
more fun, too!

Allan Moluf, resident genius of CMTUG, currently has a Dumb Terminal
program. | wouldn’t dream of mentioning his name, but one Radio Shack store man-
ager has said they prefer Allan’s program to the one offered by Radio Shack! Allan
tells me it isn’t yet exactly the way he wants it, but it should be by the time you read
this!

With on fine networks only abeut six months old, | can hardly wait until a
year from now!

Would you be interested in a part-time job? Great hours (you set your
own!) and only slightly below mediocre pay! We're interested in a wide variety of
articles and programs, both short and long. To name a few: Z-80 techniques and
programs, routines that can be interfaced with a wide variety of programs, reviews of
good quality, low cost software packs (unfortunately, they dont ali meet this criter-
ial), interesting applications for which you've applied your computer, and even
games! We like to feature at least one article per month that even the inexperienced

1/8

THE ALTERNATE SOURCE JANUARY, 1980

TRS-80 owner can use. There is no way we'll ever be an all games magazine, though.
We believe that ultimately most TRS-80 users are looking for more than that.

And about Model [I? Some recent conversations about this new configu-
ration have been most enlightening. We understand the index hole makes it incom-
patible with any other eight inch drive system. Also, Radio Shack is using the lower
3K of memory for system functions, device control blocks and the like. 1'm still con-
fused about whether or not the machine has any type of peek or poke function. A
recent issue of CMTUG published 2 small article showing how to simulate PEEK and
POKE. A more recent conversation with an outlying Radio Shack store manager led
me to helieve the function is there, although with a different key word. Anyone
interested in making contact with a Model Il Users Group might do well to write to
National TRS-80 Model It Users Group of Madison, c/o Peter Daly, 430 Jean Street,
Madison, WI, 53703. Send SASE for first newsletter. (This information appeared in
On_Line, November 23, 1979, Volume 4, Issue 14.)

A special reminder for those who are contemplating submitting software,
either for publication or distribution: For publication, we offer compensation on all
articles published. Also, we will notify you of acceptance or rejection within three
weeks--guaranteed if you enclose a postage paid return envelope! For distribution, it
takes a bit longer to get the appropriate news releases out, ads prepared, ad spots pur-
chased and duplication set up--but we definitely will respond quick. We also advise
you to compare percentages given te authors!

RN KRR AN RN R SRR R W R L T T X T E T T TRy

LETTERS

Charley/Joni:

Thanks for the preview; here's some comments on your new magazine. it
sure looks ambitious, and chock full of good things. (How's that for general?) The
very first thing I see that | don't like, though, is the empbhasis on disk, at least from
the viewpoint of DOS. The point of TRSDOS, NEWDOS, and the rest, are the abil-
ity to change and to rebuild. Basing a large portion of your magazine on a product
with so few users (only 20% of TRS-80 owners, fast figures I read) is to me question-
able. QOkay, here’s more of why: | want a disk, but what | want it to do rules out
DOS. it takes too much space, and I'm not about to buy a second drive merely to
accommodate all the space needed. What | want is mass storage, not another layer of
high-level goop. But then, | don’t believe that viewpoint is representative, either.

Let me recommend avoiding bulk mailing. When you say “hold things up
a bit”, let me tell you about Vermont (vou've heard of it? Postal Service hasn't
much.). We get good first class service on some things; On_ Line comes a week after
responses to my ads start to arrive, and that's mailed first class. My Byte never
before the month it's dated, and some of the bulk stuff that doesn’t look critical to
the postal people arrives VERY late...announcements of performances sent bulk usy-
ally arrive after the performance, etc. Perhaps you could offer the option of first
class mail, anyway.

Dennis Kitsz
Roxbury, VT

1/9

THE ALTERNATE SOURCE JANUARY, 1980

Believe me, Dennis, we're not ignoring Level 1, nor do we intentionally place an
emphasis on DOS~it’s just that most of our support staff works with DOS. We are
actively seeking Level 1l articles, and will give special consideration to articles that
coincide with both systems. And you're probably right about the first class mailing
option; however, this is where we stand--postage is our second biggest expense, next
to advertising. So this is what we’ll do: If you, or any other subscribers, would like
to receive The Alternate Source via first class mail, all we ask is that you send us an
additional 81.00 to cover postage and handling.--Kos

Dear Sirs:

My primary reason for subscribing is interest in the “annotated documen-
tation of disassembled Level 1l and DOS”--mainly DOS. Please let me know how to
order just as soon as any such information is available.

Andrew Law
Dallas, TX

The Alternate Source will not be selling any disassembled listings, Andrew, but we
will be covering the subject in our magazine. In the next issue, there will be at least
four pages depicting RAM memory pointers and entry points. Many of these are
applicable to both Level Il and DOS. There will also be several articles in following
issues dealing with how to utilize these memory locations. Thanks for the feedback!!

Charley and Joni:

On reviewing the material you sent me, | notice that you mention "'soft-
ware” and "hardware” types. | would like to mention that there isa growing contin-
gent of “user” types. To some extent, these will be software types, but not in the
sense of doing their own programming. They will be interested in your software
prices, gistribution, reviews of products, etc. There may well be market, or one to
be developed, that addresses the issue of what to do with the machine once the game
playing gets old, or how to effectively integrate bits and piaces of software into a
system that assists one in doing complex things with the computer, or just how to
integrate the computer into one's life-style in such a way as to thoughtfully make it
(the computer) part of it (the life-style), rather than an add-on gadget.

| encourage you to find ways of introducing people to FORTH, and to give
it utility and peripheral software support. | think this or something like it is going to
have a significant place in the software field, once peaple figure out how to make use
of it. | recognize that the low level of its current use will probably not warrant your
giving it that much attention for a while, but | can see its potential. Again, [urge
you to keep it in mind.

Bili Brown
Haslett, Ml

Editor’s Note: There is no doubt that Bill’s influence is reflected in many of the
finer points of this magazine--his feedback has been very valuable!!

1/10

THE ALTERNATE SOURCE JANUARY, 1980

EMBED MACHINE LANGUAGE IN BASIC

Dennis Kitsz

And simple, too. It's an idea that has been around for a while, but certain-
Iy bears repeating because it is convenient and efficient. It isn't very transparent (in
fact, once it's in a program it is most definitely obscure), but for completed programs
with class, it does the job. Here’s how and why:

In the TRS-80, all variables can be located with a wenderful Level Il com-
mand known as VARPTR. Probably only a few of you have ever used it, so here is
some of what VARPTR will find for you. Assume A$ is a string variable in a pro-
gram. The statement

X = VARPTR(AS)

assigns the address of the string's length to X...so, PEEK(X) is the length of AS. But
PEEK(X+1) and PEEK(X+2) are really the important things for us. PEEK(X+1) is
the least significant byte of the string’s starting address, PEEK(X+2) is the most sig-
nificant byte. These values are in decimal, of course, hecause Level Il doesn‘t deal in
hex. So, convert them to a complete decimal address value with this formula:

AD = PEEK(X+1) + 256 * PEEK(X+2)

Do you see what is happening here? And what can he done with it? If we
knew, for example, that A$="XXXXXXXXXX", then we can change A$ by POKE-
ing values into the addresses we have calculated! Using the variable AD from the for-
mula above, POKE AD,65 will change the string to “ AXXXXXXXXXX". Going fur-
thur, the statement POKE AD+9,191 will leave a graphics block in the final position
of the string. Here's the point: you can create a dummy string containing the same
number of bytes, putting it in your BASIC program. Find out where the string is lo-
cated with VARPTR, then POKE a series of DATA statements in place of the string!
The string will now list or print as a meaningless collection of characters, tabs, car-
riage returns, etc., but it will actually be a machine language program which BASIC
thinks is an ordinary string variable. What are the benefits of this? And how ulti-
mately do you use the thing? The benefits are simple: once the data is POKEd in
place, the DATA statements can be dropped from the program, and the string re-
mains intact (and remember, as the program is edited, this string is now moved a-
round memory just like any other string), thus, it can save 75% of the space needed
for all those decimal DATA lines~plus there are no worries ahout messing up with a
wayward RESTORE in the program. Next, you don‘t need to set MEMORY SIZE,
because it is now an integral “part” of the BASIC program. So that leaves us with
the question, how do you get to it? Here VARPTR is again the answer. Addresses
(decimal) 16526 and 16527 contain the USR(0) function in Level Il Basic. POKE
16526 with PEEK(X+2). No matter how the program is changed or edited, X has
been defined in terms of VARPTR(AS), and will always place the correct address
into USR(0)! Again, it's slick. Only one thing to note: all the machine language -
programs must be relocatable, because the simple editing of one character sur-
rounding BASIC program will alter the absolute memory position of the string vari-
able holding the machine routine. And you know that if you release the program
commercially, someone will instantly modify it--and oh, the complaints! Now here’s
a summary:

1. Write the Basic program.

1711

THE ALTERNATE SOURCE JANUARY, 1980

. Create a dummy string of any unused variable name (example A$)

Make the string the exact length of your machine language

routine {(example A$ = “LOON")

. Write a program line that sets a variable to VARPTR of the
string (example X = VARPTR(AS))

. Find the starting address of the string by converting the
decimal bytes to a single decimal value (example AD = PEEK(X+1) +
256 * PEEK(X+2))

6. Createa (temporary) set of READ and DATA lines in your program
which will POKE the machine language from program into place
(example FORN=AD TO AD+3: READ L: POKE N,L:NEXT:
DATA 33,16,16,204 will put this short and relatively
meaningless routine in the place of “LOON": LD HL,1010 RET)

. Set the USR(0) starting addresses to PEEK(X+1) and PEEK(X+2)

. RUN the program, which will do the POKEing

. Delete the READ, DATA, and POKE loop lines used for the routine

H» WM

o

[T-N-- R

One final note: take care when putting a zero into the POKEd string chan-
ges. The string will seem to have been truncated when listing or printing, and modi-
fications to program will cause havoc. Avoid a zero if you possibly can, especially
if the program is going out to the tampering public.

And that's all there is to it!

CURSOR CONTROL

| recently discovered that the capability for manipulating the on-screen
cursor for the Model 1 is better than | thought.

" The situation | encountered was this: 1 was designing a program that
allowed a variable amount of data input from several different screen locations.
After data was checked for validity, if the information was okay, the next piece of
data could be entered. 1f not, a branch was made to a subroutine where an error
message was flashed on another part of the screen. My problem arose while trying to
get back to the part of the screen where the input originally hegan, to allow it to be
re-input.

Some other considerations which complicated matters: at all times, a
heading was to be displayed at the top of the screen so the user would know which
portion of the program he was in, thus | couldn’t use ‘CLS". Also, ‘PRINT@’ was out
because of the varied input locations. The data was being input into an array using a
FOR-NEXT loop. The PRINT@ would have caused too much additional coding.

The solution to this problem lay in the VIDEO(DO) control block whose
starting location is at 401DH, 16413D. The current cursor location is stored in lo-
cations 4020 and 4021H. Although the problem below is greatly simplified, it shows
one solution:

500 FORI=1T010
510 7”VARIOUS STRING LENGTHS TO MESS UP MY NEAT

INPUTYY"
520 X = (PEEK(16416) + 256 * PEEK(1 6417)) - 15360
530 LINEINPUT IS$(1) (continued on page 25)

1/19

THE ALTERNATE SOURCE JANUARY, 1980

“

VISA & MASTER CHARGE WELCOME! 3C PAYS SHIPPING!

Contemporary Communications Corporation
P.O. Box 1707, East Lansing, Ml 48823
3[: 24 hour phone orders, (517) 339-1028 ac

MODEL | SOFTWARE MODEL 11 SOFTWARE!!

(10% off on orders over $40.00!)
NEWDOS * $49.95 PACKAGE 1: Editor Assembler
NEWDOS+ * $99.00 Disassembler
Infinite Basic $49.95 Superzap (Mach. Lang!)
Infinite Business Basic @ $29.95 rex
Accounts Receivable * $79.95 All three programs, just $100.00!
On-Line Invoice * $ $39.95
Remodel t $24.95 PACKAGE 2: GSF includes
Remodel + Proload t $34.95 PEEK & POKE!
Copsys $14.95 Hex
Comproc $19.95 Only $50.00!
GSF f $2495 ror mopEL 11 SOFTWARE ONLY:
DOSORT *t $34.95 TO ORDER: Include 8" diskette with
Radex-10 Data Base * $99.00 TRSDOS & proof of purchase of NEW-
Payroll * $59.95 DOS and Radio Shack EDTASM (paid
Relax 48K * $49.95 receipt, page of manual, etc.--will be re-
Mail-80 48K & GSF * $69.90 turned). Write for additional details.

*Requires Disk tSpecify RAM size @Requires Infinite Basic $Requires Accts Rec.

UTILITIES NOW AVAILABLE FROM THE ALTERNATE SOURCE:

|SAR~Information Storage And Retrieval is THE Information Management System
for micros! Whether your needs are for hobb y or business, mailing lists or formatted
reports, nothing on the market beats ISAR’s speed (uses random file structures crea-
ted with easy user prompts) and price: just $16.95 on disk with documentation.

DVR--machine language Driver with special commands allows you to input lower case
shifted upper case or echo screen output on printer. Provides keybounce fix and re-
peating key function and other extras! Sorry, not compatible with NEWDOS at this
time. On cassette, just $9.95, Specify Level I1 or DOS and Memory size.

DISKLIB~uses a special machine language routine to read all your diskette names
and directory entries and creates a master file of same. Screen or formatted hard-
copy output. Works with TRSDOS, NEWDOS, and VTOS. On cassette, $9.95.

COPYDISK-a machine language utility which allows disk owners to copy ANY and
several fiies using easy user prompts! Allows single drive owners to access and copy
formatted only diskettes or multiple drive owners to copy files without system dis-
kette. On diskette, $15.95 with documentation.

TO ORDER: Address all software orders to TAS, 1806 Ada Street, Lansing, MI.
Zip is 48910. Pilease include 50 cents per program to help defray postage costs.

1/13

THE ALTERNATE SOURCE JANUARY, 1980

THE ALTERNATE SURVEY

1, personally, have heen asked to fill out no less than a handful of surveys
this past year. Some | didn’t mind, others | didn't fill out. The reasons given for the
survey, either explicitly or implied, were often the decisive factors.

We don’t particularly want to include a survey; they're a hassle. Yet, we
do want to edit and publish a magazine that offers a service to its readers, either in
the form of providing instruction, a market place for software and supplies, resource
material, whatever. It's the "whatever’ that keeps us cencerned.

The reasons | can give you for filling out this survey are thus:

1. Our circulation is relatively small, and not everyone is going to respond.
The input you provide at this time could have a strong influence on the development
of future issues.

2. We shall choose, in the usual random fashion, three survey participants
and reward them with their choice of a year's subscription {or extension) of The Al-
ternate Source News, or a $10.00 certificate good on any software pack we offer.

Alas, at this early stage we aren’t offering post paid mailers, but they are a
definite possibility in the future.

If you do choose to participate, you are by no means limited to the space
allocated. If you choose not to tear your issue, answers may be supplied on a plain
sheet of paper. Just copy the number and corresponding answer--no need to rewrite
the question.

Mail all responses to The Alternate Survey, 1806 Ada Street, Lansing, Mi,
48910.

1. Are you a subscriber?

2. Did any one article have a peculiar, repugnant odor?
If yes, which one?

3. Which article did you find most favorable?

4. Was there something you wanted or expected to see, and didn't?
if yes, what?

5. What suggestions or comments would you have that could help make The
Alternate Source more valuable to you?

6. Was there an over-emphasis or under-emphasis on any one area?
If yes, which one?

7. What is your TRS-80 hardware configuration (how many printers, disk drives,
stringy floppies, how much memory, etc.)?

1/14

THE ALTERNATE SOURCE JANUARY, 1980

MORE SOFTWARE FROM THE ALTERNATE SOURCE!N!

ADVENTURE SERIES--featuring ADVENTURE 8 PYRAMID OF DOOM! Adven-
tureland, Pirates Adventure, Mission Impossible, Voodoo Castle, The Count, Space
Odyssey and Mystery Fun House also available! On cassette, $14.95 each, on djs-
kette as follows: 1 & 2 for 324.95: 3, 4 & 5 for $39, 95; 6 & 7 for $24.95 and 8 for
Jjust $19.95,

TSHORT--the machine language utility that loads into low memory and allow you to
key in programs in a minimum of time and with a minimum of mistakes, DOS
version and Level Il version on same tape. $9.95

GSF--the machine language utility package that features possibly the best sort rou-
tine available for the TRS-80, as well as many other machine language functions.
Specify DOS or Level I/ and memory size. $24.95

TEMPLE OF APSHAI--For the experienced Dunjonmaster or the novice. Everyone
should have at least one Dungeons & Dragons type game. Definitely not the kind
vou master in ten minutes. $24,95

MICROSKETCH 1i1--The graphics package has been updated, This is the last time
they will be available at this price. We also have support utilities for Microsketch.
Write for information. Microsketch 111 (until January 30th) is just $3.95.

SARGON Il-Never has a micro-chess game been closer to playing with the finesse
of @ master. Sargon Il is the best chess game available for the TRS-80 at this
time. Only $29.95,

THIS COUPON MAY BE DUPLICATED, OR YOU MAY WRITE YOUR ORDER
ON AN ADDITIONAL SHEET OF PAPER OR YOU MAY USE THIS COUPON.
ORDER NOW--IT'S AS EASY AS FILLING OUT A TAX FORM!!

ADVENTURE on cassette: Total your order using prices
from ads above, and enter the

(J1.()2()3 ()4 ()5 amount here:

(6 ()z(ye ~ ~~ Aamountheer

ADVENTURE on diskette: Multiply the above amount by
.10 (10%) and enter the amount

()1&2 (13 4&5 ()6& 7 in this blank:

tve ——~~~~ ntisbenk

TSHORT () Subtract the second amount
from the first amount, and

GENERALIZED SUBROUTINE FACILITY () enter the amount in the blank
here:

TEMPLE OF APSHAI (L

{Amount Due)
MICROSKETCH il ()
Write check or get money order
SARGON Il () for Amount Due, and enclose
with coupon.

MAIL TO: The Alternate Source, 1806 Ada Street, Lansing, Ml 48910,
VISA & MASTER CHARGE ORDERS BY PHONE: (517) 487-3358

1/15

escessceco

-‘ltooo.o.-oQot-'olonccc'.'o....o.ocunol..o.

THE ALTERNATE SOURCE JANUARY, 1980

IS THIS YOUR FIRST ISSUE
OF

THE ALTERNATE SOURCE?

Or, heaven forbid, someone else’s? We hope there were at least a few things you en-
joyed. Also, may we point out a few things? Be sure to check out ‘In The Buffer'--a
list of up and coming features. Look over our growing selection of software--and not
just games, either! We're looking forward to making your TRS-80 the valuable tool
you always knew it could be!

Our rates are not the cheapest--but they’re far from the highest! $9.00 will cover
you for a year {6 issues), or you may sample another issue for just $2.00.

We won't ask you to clip the coupon from this page; if you'd like, just write the in-
formation on a sheet of paper. Include your name and address, and whether you're
subscribing or sampling. We'll guarantee you'll be pleased, or you may receive a re-
fund on unused subscription monies at any time!

Please, send check or money order anly. Yes, we have received a couple cash orders;
we don’t know how many we didn’t receive. Mail to: The Alternate Source, 1806
Ada Street, Lansing, M1 48910. Phone (517) 487-3358 for Visa or Mastercharge.

.
.
.
.
.
.
.
.
.
.
.
.
°
.
°
°
.
.
.
.
.
.
.
.
.
.
-
.
°
.
.
.
.
°
.
°

SUBSCRIPTION ORDER ADVANCING YOUR KNOWLEDGE

————————————————————————— How many times have you seen a ref-
erence in a magazine article to ‘Searching
and Sorting Algorhythms’ by Donald
Knuth or one of his other classic books?
We've seen several, and our curiosity
got the best of us. We ordered a limited
supply to have on hand for persons who
are interested in considerably advancing
their general computer knowledge. There
E are three books in the series, and each
¢ volume retails for $22.50 plus postage.
E For a limited time, we will make these
| have enclosed $9.00 check or money E volumes available to our readers for $20
order. E each plus $1.50 per volume postage. I

E

.

{Name)

(Address)

(City)

eesssesesscsssscccesrscseseccos

(State, Zip)

you order all three, we will pay shipping.
Recommended only for the serious--not
light reading! Mail orders to Book Dept.

() 1 would just like a sample issue.
Enclosed is $2.00.

-oooao---.--oooou-qc--o-.o.cooncnoo.

1/16

THE ALTERNATE SOURCE JANUARY, 1980

S S ey

DOCUMENT

Document is a unique way for you to relay messages to someone, either in
DOS or Level il, using your computer.

Probably your most frequent use will be to pass along instructions or re-
marks in the form of a disk file or system tape file, which would precede another
program. In DOS, you can ‘AUTO FILENAME’ and instruct the recipient to boot
from your diskette. With Level 1, you will have to clue them that the first program
is @ system program along with the system name.

Implementation is easy. You merely enter the following source code, re-
placing the DEFM literals with the message you want to pass along.

OFFH is the control byte for 'END OF PAGE". Every time the program
encounters this, it waits for any key to be depressed. If the next hyte is 00H, the
program returns control to DOS or Level 11, otherwise it elears the screen & prints
more DEFM statements until it encounters another OFFH byte. Make sure you use
a 'DEFB OFFH’ after every screen you wish to display, and a DEFB 00H after the
last DEFB OFFH.

I T T e e 2 e e e 3 33 33 3636 3 2 I 36 T oI 3636 I 36 6 363 36 36 36 I e 3696 W W e K e e
ik bk bt L L LT 3 K 33303636 36 3 36 3 N3 202 6 I e K K *

DOCUMENT Program Listing

TA00 00100 ORG 7A00H

TA00 21247A 00200 BEGIN LD HL,TEXT

7A03 CDC901 00300 NEXT CALL CLS

TA06 3EFF 00400 LD A,OFFH

7A08 11003¢C 00500 LD DE,SCREEN

7A0B 010004 00600 LD BC,PAGE

TAOE EDAO 00700 CONT LDI

7A10 BE 00800 cp (HL)

TA11 20FB 00900 JR NZ,CONT

7A13 2803 01000 JR ZINKEY

TA15 EADE7TA 01100 Jp PE,CONT

7A18 CDA4900 01200 INKEY CALL KEYIN

7A1B 23 01300 INC HL

7A1C 3E00 01400 LD A,00H

7A1E BE . 01500 cp (HL)

TATF 2802 01600 JR ZRETURN

7A21 18E0 01700 JR NEXT

1A23 C9 01800 RETURN RET

3coo 01900 SCREEN EQuU 3CO0H

0049 02000 KEYIN EQU 0049H; ROM-LIKE INKEY$
01Cc9 02100 cCLS EQU 01C9H

0400 02200 PAGE EQU 400H

1A24 02300 TEXT EQU $

71A24 41 02400 DEFM 'Any text placed in these’
7A3C 20 02500 DEFM 'DEFM statements’
7A51 FF 02600 DEFB OFFH

71A52 2E 02700 DEFM e Will be displayed on '’
7A70 53 02800 DEFM ‘the screen when RUN!'
TA%0 FF 02900 DEFB OFFH

7A91 00 03000 DEFB 00H

1AD0 03100 END BEGIN

1/17

THE ALTERNATE SQURCE JANUARY, 1980

(Undoubtedly, there are some instructions in Basic or any other language that are
used more than others. The general reason is lack of documentation and specific ex-
amples of some of the maref complex instructions, thus many peop'le don’t under-
stand the internal results of these complex instructions. Here we hope to fill the gap
in documentation for the TRS-80 AND and OR instructions and show a potentially
new application for them. This info will be good for developing assembly language
programs, too! Kos)

BYTE PACKER
C. W. Simpson

One of the definite problems with the Model 1 TRS-80 is on-line capacity
to store large amounts of data, an important consideration in business and other ap-
plication programming. For persons using tape 1/0, time considerations make data
storage intolerable. Diskette 1/0 is more tolerable, but space allocations quickly be-
come frustrating. Let’s see if we cant overcome these inherent deficiencies some-
what. We'll begin with a quick review of what you should already know, and then
show you how to use it.

There are techniques that assembly language programmers have always
used--they were taught to from the beginning! Up to now, most of us Radio Shack
folk have been so busy just learning to program that we haven't had much time for
‘technique’. Let’s see if we can’t change that trend. Now pay attention!

First, we need to make sure you understand logical ‘AND’ and "OR’ func-
tions. We'll start with the ‘OR’ function, and we're going to ‘OR’ two binary num-
bers (base two). When we ‘OR’ two numbers, we're looking for a ‘1’ in any column--
if we find AT LEAST one (we could find two), then the result isa "1":

0110 1010
OR: 1100 OR: 0011
1110 1011

Using the "AND’ function, we're looking for a column with TWO 1's. If
we find two, the result isa ‘1"

0110 1010
AND: 31100 AND: 0011
0100 0010

As you are undoubtediy aware, the computer thinks in binary, or the ‘on’
and "off’ (1 and 0) status of thousands of tiny sswitches’. This is the true machine
language we hear so much about. For our immediate project, we need to think in
bytes. It just so happens that a byte contains 8 bits. A bit is best thought of as
one of the ‘on-off’ switches just mentioned, or, when talking about binary, a one or
a zero.

Now, some background on general trends in application programming, and
we can begin.

Usually, in business data processing, there are several "fieids’ that must be
stored pertaining to each entry. For example, let’s look at an employee record.
There is probably a marital status field, a field to indicate whether he is salaried or

1/18

THE ALTERNATE SQURCE JANUARY, 1980

hourly, a field to indicate number of dependents, and any number of other items.
As a general rule, these fields are stored in one byte each, and (if it's an integer)
sometimes twe.

Is there any way to compress this data to make storage more efficient?
Of course there is!

Let's all pretend for a few minutes that we work for XYZ Realty. Let's
also assume that we get ten or more calls a day from people inquiring about a parti-
cular type of house. In all probability, our filing system doesn’t permit us to retain
enough information to immediately match up a particular house with a particular
caller. Because of this, most inquiries are probably lost...we just don’t have an effec-
tive way of accessing this data. How about taking our TRS-80 to the office and set-
ting up a data base program to improve our efficiency? (And make our TRS-30
deductible, tool)

Naturally, everyone wants different ‘eptions” in their dream house. A
bhasement here, a garage there, a fireplace is mandatory for one guy, while nearness
to schools is essential for this family. We’ll assume there are eight options for our
example: basement, garage, large yard, nearness to schools, city or suburbs, fire-
place, central air, and a built-in pool. Except for option 5, all desired options can he
answered ‘Y’ or 'N’. We could field each option as one byte each, but why don’t we
try something different? Study the following code:

Beginning of Program...

010 DEFINT C

200 REM ** DETERMINE AND STORE SELLING POINTS **

210 CLS:CHOICE=0:BASEMENT=1 28:GARAGE=64:YARD=32:
CITY=16:SCHOOLS=8: FIREPLACE=4: AIR=2:PO0L=1

220 PRINT@576,"WOULD CUSTOMER LIKE...

230 PRINT@640,”A BASEMENT?"CHR$(31);: G OSUB1000

240 IFQ$="Y"CHOICE=(CHOICE OR BASEMENT)

250 PRINT@640,”A GARAGE?"CHR$(31);:GOSUB1000

260 IFQ$="Y"CHOICE=(CHOICE OR GARAGE)

270 PRINT@640,”A LARGE YARD?”CHR$(31);:G0SUB1000

280 IFQ$="Y"CHOICE=(CHOICE OR YARD)

290 PRINT@640,”HOUSE IN CITY?"CHR$(31);:60SUB1000

300 IFQ$="Y"CHOICE=(CHOICE OR CITY)

310 PRINT@640,”CLOSE TO SCHOOLS?"CHR$(31);:60SUB1000

320 IFQ$="Y"CHOICE=(CHOICE OR SCHOOLS)

330 PRINT@640,”FIREPLACE?“CHR$(31);:6 0SUB1000

340 IFQ$="Y"CHOICE=(CHOICE OR FIREPLACE)

350 PRINT@640,”AIR CONDITIONING?"CHR$(31);:GOSUB1000

360 IFQ$="Y"CHOICE=(CHOICE OR AIR)

370 PRINT@640, " SWIMMIN G POOL?’CHR$(31);:GOSUB1000

380 IFQ$="Y"CHOICE=(CHOICE OR POOL)

999 END
1/19

THE ALTERNATE SOURCE JANUARY, 1980

1000 REM **UTILITY SUBROUTINES START HERE**
1010 Q$=INKEY$:IFQ$=""THEN1010ELSEPRINTQ$:RETURN

Please note: In order for this routine to work properly, the ‘OR’ and it's
arguments must be enclosed in parenthesis!

To see what's happening, let’s look at a sample customer, one that's easy
to please. His only requirements are a large yard (32) and nearness to schools (8):

First, ‘CHOICE’ has been set to zero: 00000000
We 'OR’ it with 32 (YARD): 00100000
Now 'CHOICE’ equals: 00100000
We ‘OR’ our new 'CHOICE’ with 8 (SCHOOLS): 00001000
And now 'CHOICE’ equals: 00101000

Assuming you've typed in the preceding code, and RUN it (selecting the
above options, as in our example), if you "‘PRINT CHOICE’, your answer should be
40, which is 00101000 in binary, or a "1" in both the yard and schools columns.

Now let's put the value in the customer’s record. At this point, it is really
a two-byte integer. You did a "DEFINT C' in line 10, so let’s convert it to one byte
by “fielding’ C$ as ‘1’, then LSET C$=STR$(CHOICE). Now 'PRINT C$'. Youran-
swer this time should be @, the ASCIH value for 40.

Assume that now we have all the vital information for the customer, and
it's fielded properly, etc. and we've written the record to disk, and closed the file.
(Important!!)

Our program has another subroutine called 'FIND HOUSE'. We still have
our customer's information in memory to fit his criteria. Let's see if we currently
have a house available that he might be interested in. (When we brought our system
to the office a few weeks back, we added all of our available houses for sale and have
kept it up to date through today.) We add our 'houses available’ diskette in response
to the prompt, and go house-hunting by computer!

When we added the houses, we had a subroutine very similar to the ‘deter-
mine and store selling points’ routine above. With some careful programming, it
could be the same one, substituting "DOES HOUSE HAVE’ for 'WOULD CUSTO-
MER LIKE'...possibly with data statements.

When we set up the data base for the houses, we incorporated a field
named OPTIONS to store the features of each house. We're now ready to scan the
*house’ file and make a comparison using the ‘AND’ function we learned earlier. All
routines not shown are commented to assist your understanding. Pay special atten-
tion to line 550!

500 'FILE HOUSEKEEPING IS DONE - FIND A HOUSE

510 FOR REC=2 TO LSTREC

520 PR%=INT(REC-1)/30:SR%=REC-30%(IP-1)
‘FOR LEVEL 1l YOU WOULD SIMPLY INPUT THE VARIABLES
DESCRIBING EACH HOUSE AND EXECUTE 550 ON. PR%=PHYSICAL
RECORD NUMBER, SR%=SUB-RECORD NUMBER. SEE RADIO SHACK
MANUAL ON RANDOM FILE STRUCTURES FOR MORE DETAILS.
ALSO, WE'RE ASSUMING THAT ALL DATA FOR A HOUSE CAN BE

1/20

THE ALTERNATE SOURCE JANUARY, 1980

STORED IN 30 BYTES - WE'VE DONE A WHOLE BUNCH
OF BYTE PACKING ELSEWHERE!

530 FIELD1, (SR% - 1)*30 AS DUMMY$, 28 AS OTHERDATAS,

2 AS OPTIONS: 'THIS AND THE LAST STATEMENT wouLD
PROBABLY BE SUBROUTINES IN A REAL APPLICATION TO
PERMIT ACCESS FROM VARIOUS POINTS IN THE PROGRAM

540 OPTION=CVI(OPTIONS):"IN LEVEL Il YOU WOULD SIMPLY INPUT
AN INTEGER VARIABLE. CVI MEANS CONVERT THE STRING
PARAMETER TO AN INTEGER

550 IF(CHOICE AND OPTION) < CHOICETHENS570:'THIS HOUSE
DOES NOT FIT THEIR REQUIREMENTS!

560 GOSUB1 300:PRINT"CONTINUE?":GOSUB1000:|Fﬂ$="N"THEN580:
‘THIS LINE IS EXECUTED ONLY IF THE HOUSE HAS THE
OPTIONS THE CUSTOMER DESIRES. SUBROUTINE 1300
WOULD PERMIT A HARD-COPY DETAILED HOUSE DESCRIP-
TION. AS EACH MATCH IS MADE, THERE IS AN OPTION
TO EXIT FROM THE PROGRAM (TEST FOR “N"”).

570 NEXT REC:'GO LOOK FOR SOME MORE HOUSES

580 CLOSE:RETURN

You should be able to see what's happening. Taking our original new cus-
tomer and his desired options (00101000) and the options available for each house,
we can ‘AND’ the two fields and hopefully come up with a match. By ‘AN D'ing the
house description field and the option field, any house not having the required op-
tions would be less than the value of the option field.

Assume a particular house has a basement (128), garage (64), a large yard
(32) and is close to schools (8). The value of this house would be 232, or 11101000
binary. If we have accessed this house from our data base, and set all the variables
pertaining to it, especially the variable 'OPTION', line 550 would be doing something
like this:

CHOICE = 00101000
OPTION = 11101000

RESULT = 00101000

Here, the result is not less than choice. Thus, we have found a house that
fits the minimum criteria!

I will admit that this type of programming takes much more coding, hut
the efficiency of storage more than offsets that detriment.

Our purpose here is to provide you with a routine that can be used in
several programs, rather than an actual program that’s typed in and forgotten.

Anyone who has gotten bored while waiting for tape 1/0, or frustrated
with ‘DISK FULL’ messages should give this technique a try. Why store one piece of
information in one or two bytes when you can store several? If you are using inte-
gers, you could store up to fifteen different pieces of information in one integer vari-
able by assigning codes to the higher powers of two (256, 512, 1024, 2048, 4096,
8192, and 16384). Some really wild and erazy programmer could pack a life history
into a single or double precision variable using these techniques! You aren’t restric-
ted to yes or no data, either. For example, you might AND or OR any four bits with
a number representative of 'NUMBER OF KIDS'. That would handle up to 15; if

1/21

you feel any doubts about that, use five bits to handle up to 32. The point is, why
do it with 16 bits, when you can get away with using just four? You have, at best,
445,000 bits on a diskette. Next time you geta 'DISK FULL’ message, ask yourself
where they went! By using this and similar techniques, you could save as much as
25%! If you don’t think that's significant, just ask somebody who's using the TRS-
80 for any major application. For cassette owners, you tell me if one quarter less
1/0 time would be helpful!

Can you think of any applications where this might be useful? The Alter-
nate Source will award a $30.00 software package (your choice from over $400.00
worth of great programs!) plus regular remuneration to the programmer who can best

demonstrate the above techniques. Deadline: April 31, 1980.

A DOUBLE DEAL FOR
DISK DRIVE OWNERS!!!

Directories starting to overflow?
Let us help!!

Deal Number One:

A box of Verbatim diskettes, (ten,
count ‘em!) the top quality kind you've
come to know and love! No dirty deals!
Diskettes come in soft box with shucks
and no surprises! A mere pittance at
$26.50 plus $1.00 for postage!

Deal Number Two:

(A must for anyone who uses dis-
kettes for unusual purposes; swatting
flies, etc.). TWENTY of the above type
diskettes for 2%26.50. That's (carry the
one, put out the cat) $53.00 (only). No
postage!

No additional discounts of any kind ap-
1o this offer! (Shucks!!)

Order today by mail or phone. Make
checks payable to "A Double Deal for
Disk Drive Owners” or ""The Alternate
Source’’ (your choice). Shipped prompt-
ly! Mail to: 1806 Ada Street, Lansing
Mi 48910. Phone (517) 487-3358.

uuuuu 36 3646 3636 6 3 06 K 236 % 3035 38

CHEAPER BY THE DOZEN!

* A Baker's Dozen, no less! *

The Alternate Source has top quality
cassettes at a price you can live with--not
twelve, but thirteen {(an even Baker's
dozen) C-10 cassettes with plastic covers
for $10.95 plus $1.50 postage. Stock up
for life--order TWO dozen (26 cassettes)
and we'll absorb the postage costst

Order today by mail or phone. Mail
to 1806 Ada Street, Lansing, MI 48910,
or phone (617) 487-3358.

TRS-80™ OWNERS
SUBSCRIBE TODAY TO

80 SOFTWARE CRITIQUE

89 Software Critique is o new publication
devoted to in depth reviews of TRS 80 cassette
software. Issue 81 is now available for immediate
defivery via First Class Mail. It is 50 pages long and
containg detailed reviews of over 50 programs or
program collections

Avnidt buying disappointing software from now on.
Read 80 Software Critique heforeyou buy. We
roview programs from o user's viewpoint - f a
program is useful or fun, we say so. If a program is
boring or contains bugs, we will tell you that, too.
Many of the programs do contain bugs and we will tell
you not to buy. We also include a game called
Telephone Directory which you can use your com-
puter fo play.
MmyBackGuunnIy-“loltmeﬂthuc
is a quarterly publication. A one year subscription is
$24. Single copies sell for $7 Subscribe for one year
or buy a single copy. If you are not satisfied with Issue
#1. return it 10 us and we will promptly refund your
money.

This offer is good only while supplies of lssue #1 last.
Subscribe today. You won't be disappointed. Send
check or maney order to

80 SOFTWARE CRITIQUE
P.O. Box 134 Waukegan, IL 60085

1/22

THE ALTERNATE SOURCE JANUARY, 1980

HANGMAN

What can be said about this classic? We figured everybody had a version,
but we’ve seen it selling for as much as $19.95 within the last few months. The pro-
gram also presents a good introduction to the TRS-80 SET and RESET commands.

The program requires that you enter your own words as data lines, like the
examples in line 36. You are limited only by the amount of memory you have. A
suggestion for letting the kids play: enter their spelling words as data lines!

Every good hangman player knows that ‘E’ is the most frequently occuring
letter of the alphabet. Do you know the remaining letters, with respect to fre-
quency? Here they are, most frequent first:

ETAONISRHLDCVPFMWYBGVKQXJZ

Just a couple of other points...the letters are all displayed at the bottom of
the screen as play begins. As you guess a letter, that letter will be removed. For
this reason, if a word contains two or more of one letter, all will be printed out when
that letter is guessed.

FrRVIEvRvRregiapIn B3 36 e b3 N I 3 e 3 % * T3 I e 3 3 3 3 3 36 3 36 363 0 3 I 36 3 T W3 e e 3 B BB
nnnnn ¥ N HR FRRERRFRERNHH NN RR R %% W9 e oW W I BT NN AN K

HANGMAN Program Listing

1 CLEAR250: DIMA(27): DEFINTA-2

2 CLS:GOSUB18:G1=0: READWS:S$=""":T$=""

3 K=731:FORJ=1 TOLEN(WS):PRINT@K,"-"":: K=K+2:NEXT

4 A$="":PRINT@D,CHR$(32):PR|NT@U,"WHAT IS YOUR GUESS”;

5 GOSUB34:RESET(10+(ASC(A$)-64)*4,42): GOSUB12

6 FORI=1 TOLEN(WS):IFA$=MID$(WS,1,1) THENGOSUB17

7 IFLEN(SS)=LEN(WS$)THEN

PRINT"WE HAVE US A WINNER! WANT TO PLAY AGAIN?":GOTO032

8 NEXT:IFA$=B$THEN4

9 G1=G1+1:T$=T$+A$

10 ONG1GOSU B21,22,23,24,25,26,27,28,29

11 GOTO4

12 FORT=1TOLEN(3$):|FA$=M|D$(S$,T,1)THEN16

13 NEXT

14 FORT=1TOLEN(TS$):1IFA$=MI D$(T$,T,1)THEN16

15 NEXT:RETURN

16 PRINT"YOU ALREADY GUESSED THAT!":FORU=1TO300:NEXT:GOT04

17 B$=A$:PRINT@0,STRING$(60,” “):PRINT@D,”GOOD GUESS!!":
FORT=1T01025:NEXT:GOSUB33: RETURN

18 FORA=9T010:FORB=54T067:SET(B,A):NEXTB,A:RETU RN

19 FOHA=54TD56:FORB=11T024:SET(A,B):NEXTB,A

20 SET(63,11):X=903: FORY=65T090:
PRINT@X,CHRS$(Y);:X=X+2:NEXT:RETURN

21 FORA=61T065:FORB=12T01 3:SET(A,B):NEXTB,A:RETURN

22 SET(63,1 4):RETURN {continued on page 25)

1723

THE A=L£Z'ERNA TE SOURCE JANUARY, 1980

VTOS STILL VEILED

VTOS 3.0 is now VTOS 3.01, so I'm led to believe. 1 couldn’t get the ori-
ginal diskette to back up-fatal in the case of VTOS; the master diskette orders you
to make a backup and run from that. Upon receiving 3.01 my enthusiasm was re-
newed--for a few minutes. Source disk read errors on every attempt. Upon the
inspirational guidance of my local Radio Shack dealer, | took my VTOS diskette and
disk drive to his store. To my surprise, the diskette DID back up on his system.

HI HO, HI HO, Off to the repair shop we go! Three days later the word is
that there is nothing wrong with my drive. Apparently, | discover later, there's a
discrepancy between the speed that the inner tracks are accessed on TRSDOS 2.2
and VTOS, thus causing the high track numher read errors. 1 understand Percom
now has a hardware fix for this problem, although | haven't ordered it yet--I'm not
sure if 1 will.

The reasons are this:

1. VTOS is only sparsely documented. Everything comes on the diskette
and you have to print it out. The listing of commands and their
implications are exciting, yet to this date | have yet to verify if any
work.

2. VTOS tears up the top of memory--1 assume it's the top--by creating
various buffers and variable shuffling. For anyone hoping to utilize
machine language routines, the ill-documented access to this area
can be disastrous.

3. VTOS is toa well protected. Makinga hackup is a chore with its own
operating system, impossible with any other. One of the early
sectors has been encoded not as a data record, something which most
backups and formats look for or create.

| believe the attempt to "protect’ the operating system is more harmful
than good. In the first place, the majority of disk owners that | know are not swap-
pers seeking to save $14.95 on a popular game. They are business or professional
people seeking help with real applications or programmers who are by no means into
software swapping. At best a programmer would provide a medification to improve
the system to someone who already had it-if the other person were a friend. Every
other person pays cash.

The sad part of this store is that VTOS potentially has the options to assist
the people with serious computer applications: a chaining utility so that a business-
man could set up a job stream, go to lunch, come back and find his work all caught
up; a system history log so that he can easily track down where things went wrong
while he was chowin’ down; a purge command to quickly eliminate all data {or
other) work files; variable record lengths to permit maximum utilization of disk
space. Assembly language programmers could enjoy a wider variety of Debug com-
mands; a patch command for incorporating upgrades to machine language files; the
diskette contains several modules that are supposed to enhance telecommunications--
an RS23Z driver, a keyboard send/receive terminal emulator and an advanced (?!)
communication package-l really wish ! could try some of these out.

1/24

THE ALTERNATE SOURCE JANUARY, 1980

I will advise you that there are some people who are seen smugly enjoying
(and improving) VT0S. While on-line to the Orange County TRS-80 Users Group
pecple in California, | picked up a tip for creating VTOS patch files.

For now, does anyone want to buy a practically brand new operating sys-
tem? First $39.95 gets it. For later, | hope Randy Cook (author of VT0S 3.0 and
TRSDOS 2.1) quits playing games and makes his system compatible with serious
applications.

g 36 36 36 34 3 696 35 9 3o 36 36 36 3036 36 36 36 30 5.3 Fo 3 33 36 3 36 2 36 36 3636 36 36 * 5 3 36 33 3 3 3 3 3 I
R R I WA W R R H 3 M I R R R RN FH I WK I N KWK KR K KRN H

TRANSFER (continued)

350 PUTLL:11=11+4:NEXTI:CLOSE:
INPUT”DO YOU WANT TO PUT THE FILE ON ANOTHER DISKETTE”;
Q$:IFLEFT$(Q$,1)="Y"THEN225

HANGMAN (continued)

23 FORA=61T065:FORB=15T019:SET(A,B):NEXTB,A:RETURN

24 FORA=58T059:FURB=15T018:SET(A,B):NEXTB,A:SET(GO,‘I5):RETURN

25 FORA=67T068: FORB=15T018:SET(A,B):NEXTB,A:

26 SET(66,15):RETURN

26 FORA=64T065:FORB=20T022:SET(A,B):NEXTB,A:RETURN

27 FORA=61T062: FORB=20T022:SET(A,B):NEXTB,A:RETURN

28 SET(60,23):SET(61,23):SET(62,23): RETURN

29 SET(64,23):SET(65,23):SET(66,23)

30 K=731:FORI=1 TOLEN(WS):PRINT@K,MID$(WS,1,1)" ";: K=K+2:NEXT:
PRINT@0,”SORRY’ YOU LOSE! WANT TO PLAY AGAIN?"

31 GOSUB34:IFLEFTS$(AS$,1)="Y"THEN2ELSE34

32 5$=5$+A$:K=731+(1-1)*2:PRINT@K,A$: K=K+2: RETURN

33 AS=INKEYS$:IFA$=""THEN33ELSERETURN

34 END

36 DATA”NO”,”DIRTY"”,"WORDS",” ARE"”,” ALLOWED"

* % %

236 W30 3 ¥ % " % 34 3 36

% W% % FH ¥ ¥ % W3 N *NH¥ * * *¥%

CURSOR CONTROL (continued)

540 GOSUB1000:REM 1000 IS USED TO VERIFY THE VALIDITY
OF DATA. IF DATA ISINVALID, VARIABLE SW IS SET
EQUALTO1.

550 IFSW=1THENPRINT@X,CHR$(30);:G0T0530ELSENEXT

This will allaw you to maintain a neat screen. If we were to simply branch

back to line 510, after a few inputs, scrolling would erase already input lines to scroll
off the screen.

1/25

THE ALTERNATE SOURCE JANUARY, 1980

LAST MINUTE 0DDS & ENDS

We've received some flack about our pricing policies. It appears that "sug-
gested retail prices’ are actually "mandatory retail prices’! (Price fixing, anyone?)
Only the people who received our initial promo flyers will be really familiar with
what we were doing as far as pricing-apparently some dealers did and were furious!
Our current stance is this: if we feel the software holds merit, we will continue to
offer it; some dealers have been so kind as to let us offer their software at list price
and will allow you to discount a certain percentage from the TOTAL order. Qur
special deals, at this point, will have to come from vendors who pose no restrictions
on dealer pricing. Wish us luck.

ironically, the only vendor who explicitly stated that their dealer prices
had to follow "suggested retail prices’ (in their initial dealer package) had a full page
spread in one of tlie major mags (Jan., 1980) with some discounted prices! We chose
not to handle their software at this time because of the restrictions, even though
most of their software is very good. Now, I'm glad.

Received a letter from Jeff Lasman at Practical ApplicationsTM. Jeff re-
minded us that the word Bootstrap should be accompanied with the Trademark sym-
ol (™M) since it is a copyrighted trademark for a program his company offers. We
feel that Bootstrap '™ would be inappropriate for the column located on the inside
front cover of this mag, especially after having to attribute the name to an entity not
specifically associated with our publication; therefore, Bootstrap will have anoth-
er name, if any. Until we can communicate with our attorney, or get a call from
someone else’s attorney about copyrights, we will direct your attention to copyright
information via the prompt on this month'’s cover.

We just caught a glimpse of the availability of a new operating system for
the TRS-80. Has anyone purchased it yet? We'll investigate this further, and try and
have more information next issue. We definitely recommend a ‘wait and see’ attitude
before investing another fifty bucks! Let somebody else help ‘em debug the thing!

We definitely solicit your feedback on this first issue. Was there too much
of anything? Not enough? Something missing? You tell us. We most probably
won't be able to answer each letter personally, but we will take heed to what you
say. Our number of subscribers will never be lower {we hope!) so your comments
have a much better chance in directing our development.

**{ .“ & BRI AW NN

TAS wishes to acknowledge the following TRADEMARKS and/or copyrights:

TRS-80 is a trademark of The Tandy Corporation.

Z-80 is a trademark of Zilog.

Electric Pencil is a trademark of Michael Shrayer Software.
Bootstrap is a trademark of Practical Applications.
Sorcerer is a trademark of Exidy.

VTOS is a trademark of Randy V. Cook.

NEWDOS is a trademark of Apparat.

CPM is a trademark of Digital Research.

nnn

THE ALTERNATE SOURCE JANUARY, 1980

IN THE BUFFER

UP AND COMING FEATURES IN THE ALTERNATE

SOURCE NEWS: -

A%

AR#

Ll

Ll L]

FNH

#HR

W

HRH

How to disable your break key so no one can look at your Basic programs!
Information on self-modifying programs.

How to modify Basic ASCII files so they can he edited with The Electric
Pencil!

A program to peek inte Level 1l ROM and return the entry points for every
Level Il command! Plus, a ton of information about the Level Il ROM and
DOS RAM, including many routines you can use in your own Z-80 programs!
A very sneaky way to ‘fingerprint’ your programs which is dozens of times
better than REM statements (no, this hasn't appeared in any other
magazine--yet!)

iViore software reviews!

Information on how to recover lost DOS directories!

Which printer for your TRS-80? Productivity, cost, reliability and service
comparisons of the top printers available today!

THE NEXT ISSUE OF THE ALTERNATE SOURCE

NEWS WILL BE MAILED ON OR ABOUT FEBRUARY 20,
1980.

page 27

AFTERWARD FOR ISSUE 1

From our advertisements, Jeff Lasman determined that we were
violating his trademark for a bootstrap command processor program by
using “BOOTSTRAP” as the title for our editorializing. I considered
trademarking “Jeff Lasman” as the name for our editorial column, but,
my saner self won out. We decided to change the column to Editorial
RAMbling even though several friends, including a couple of attorneys,
suggested there was no conflict here.

Our first issue was typeset on an IBM Composer. Because of the large
number of typos we decided to use our Selectric (interfaced to a TRS-80,
naturally) to set subsequent issues.

Our thanks to the many people who pointed out the split infinitive on
the cover page.

Our goal going into this issue was to keep the magazine a size that Joni
and I could fill ourselves, should this be necessary. I would consider this
impossible by our current standards.

We were doing much phone work at this time, lining up potential
authors. To our dismay we had contacted an enthusiastic Dennis Kitsz in
Roxbury, Vermont just about a week after he had been contacted by
another new TRS-80 publication -- 80 Microcomputing.

"Would he still write for us?” we wondered.

Two Dollars Volume 1, Number 2

- THE
ALTERNATE SOURCE

The magazine of advanced TRS-80 applications

and software.

IN THIS ISSUE:

No Frills ..o
SOUNAEX ..ttt e e

Bl7 RevieW i
Diskmap ..ot
Patch Worko e
Going forBrokeccoiiiiiiii
Errata ...

Regular Features:
Editorial - 2, Letters - 14, Bulletin Board - 15, Survey - 26,

Source’s Mouth - 30, Odds & Ends - 38, In the Buffer - 39.

All trademark acknowledgments are on page 39.

WELCOME TO TAS ISSUE #2...
Lditorial Rambling by Charley Butler

You folks are great. That's all there is to it!
Sure, we've received a couple of flattering letters
(thanks, mom!), but I'm referring directly to your
responsiveness! Not only comments and suggestions, but
also with articles! We have established contsct with
several persons who have good ideas for articles; 1look for
good things in issues to come!

Some conments about TAS in general I'd like to pass
along. Most of these reflect your inquiries:

** You're more than welcome to call about whatever your
heart desires (not collect!). In order to make ma Bell
more bearable, please be advised that you can call as late
as 10:00 PM, possibly later, although after that hour many
of us become pumpkins, werewolves and various and assorted
creatures of the night.

** We were chastised@ for not elaborating on two very
important 'groups' now operating in TRS-EIGHTYDOM (huh?).
One is TCS, also known as the Tidewater Computer Society.
Four to six times a year, they mail free (news)letters to
individuals who will respond to their questionaire. Each
letter is packed with many tidbits about people, products,
program patches and the like. Joni has communicated
several times with Les Logan, one of the key figures at
TCS. She relates that right now, unfortunately, they are
not seeking to expand their circulation. However, my
current attitude is this: all Les has to do is ask, and he
is free to use this publication to further the goals of his
club and its worthy project.

The second group is CMTUG. Several readers wrote
asking us to identify CMTUG. This is the ‘Central Michigan
TRS-80 Users Group.' For over a year and a half, Joni and I
toyed around with our system, learning tidbits here and
there. Only last year did we discover, Lo and Behold, that
there were many other TRS-80 users around us! It's a great
feeling to know that there are people you can call (even
though you feel 'bothersome' at times) when you have a
problem. We would recommend that, whatever your = interest,
you check out your local users groug by attending the
meetings periodically. Members of CMTUG have proven to be
extremely helpful, both on a personal level, and as far as
supporting TAS. I would especially like to acknowledge A.
J. Rogers, who took time to provide us with valuable
consultation, who assisted us in contacting local authors,
and alsc provided us with reasonable printing rates.

One other topic: we've had a couple of complaints

about discussing our problems of getting started. We will
try to keep this to a minimum.

-2 -

"NO FRILLS" TAPE DISPLAY PROGRAM
By Dan Yerke

After owning and using my cassette-bound TRS-80 for
over a year and a half, I had accumulated a pile of
unlabeled and mostly forgotten tapes, some of which T
wanted to keep.

A means of efficiently screening ny tape pile was
needed, and Basic alone could not perform this task. To
meet this need I wrote my first machine-lanquage program
with the idea of learning the 7-80 instruction set, using
ROM subroutines, interfacing with Basic, and have a
solution to my predicament in one shot. It took weeks !

What finally surfaced from this ambitious project was
a very simple routine for performing a combination ASCIT
and hexidecimal "veritical dump" of any TRS-80 tape onto
the display screen. I call it a "No Frills" tape display
program because it's only function is to do a simple-minded
display without error—-checking routines or logic for any of
the record-types the program would encounter. It doesn't
even know when the end of a file has been reached.

The routine was assembled and then translated into
Basic data statements so there is no need to respond to
"MEMORY SIZE?" or even load the program with the SYSTEM
command. The routine is copied into a string variable
(PG$) and connected to Basic's USR(function with VARPTR
and some PEEKs and POKEs.

When the Basic USR(function is entered the machine
language routine starts the cassette and searches for a
file leader. When a file is found the data is displayed on
the screen. Pressing any of the following keys will return
control to Basic: CLEAR, SPACE, ENTER, BREAK, or the arrow
keys. When Basic has control, the number of bytes
displayed is available from the USR(function. If the
display should go beyond the end of the block or file, the
computer will "hang-up" with the cassette still running
until another block or file is found on the tape, or the
user pushes the reset button.

Since the program is too simple to know better if the
file has ended, it is necessary to stop the program when it
begins displaying the leader of the next file, and then
restart from where it stopped to give it an opportunity to
resynchronize with the leader of that file. If this is not
done, the display will not necessarily be sensible.

The display format is intended to show as nuch data as

possible at once on the screen. It is organized as five
groups of 3 display lines. The ASCII character (as upper

2/3

case unless you have lowercase installed) is on the top
line of each group with the left and right nibbles arranged
on the second and third lines respectively. The '"cursor"
is on the third line of the current 1line group and is
positioned to the next display location that will be used.
The cursor helps you to see where the display of a long
file has "wrapped-around" over previous data.

As it stands now, the program has a number of uses
associated with it's ability to display any block or file
without regard for it's type:

1)
2)
3)

4)

Identify Basic program and data tapes

Identify machine language files and programs

Experimenting with the proper volume settings for
a difficult tape

Finding for reconstruction data that cannot be
processed normally by Basic

** GCeneral Operating Procedure **

1) CLOAD the Basic program.

2) Rewind and remove the Basic program tape.

3) Load and position the tape to the leacder of
the file you want to display.

4) Type "RUN" (ENTER)

5) To stop the display hold down the space bar,
the program halts before displaying the last byte
read and returns to the Basic program. The
"bytes displayed" count does not include the
length of the file leader or the "sync byte" of
the current file. If the files on the tape are
not separated by a silence g¢gap the byte count
will include the leader bytes of the next file
(or print-# block) that have been displayed.

6) To continue displaying data, rewind to the
leader again, and hit the / (slash) key.

7) To discontinue the program, use "RESET" or

press (BRE2ZK).

8) Disk users can make the following changes to
this program to run under Disk BASIC:

1180 AD=PEEK(B+1)+PEEK(B+2) *256: IFAD>32767 THEN
AD=AD-65536
1190 DEFUSR@=AD:CMD"T"

THE BASIC LISTING IS ON THE NEXT PAGE, FOLLOWED BY
THE SOURCE LISTING.

2/4

BASTIC LISTING FOR "NO FRILLS"

1100 CLEAR 500

1110 FOR I = 1 TO 90 ' READ 90 DATA ITEMS,

1120 READ B

1130 PG$ = PG$ + CHR$(B) ' STRING THEM TOGETHER IN PGS

1140 NEXT I

1150 B = VARPTR(PG$) ' POINT B TO PG$ CONTROL BLOCK

1160 IF PEEK(B) <> 90 PRINT B, "INCORRECT LENGTH IN PG$." :STOP
1180 I = PEEK(B+1) :POKE 16526,T ' TRANSFER LOCATION OF STRING
1190 I = PEEK(B+2) :POKE 16527,1 ' PG$ AS USR(ENTRY ADDRESS.
1200 CLS

1210 K% = USR(0) ' ENTER PROGRAM STORED IN PG$

1220 PRINTEO, K%; "BYTES DISPLAYED.";

1230
1240
1250
1260
1270
1280

IF INKEY$ <> "/" THEN 1230

GOTO 1150' RESTART TAPE AND DISPLAY.

baTra 33,0,0,62,0,205,18,2,205,150,2,14,0,221,33,128
DATA 60,6, 64 221 54, 64 191 205 53,2,87, 58 64,56,183
DATA 40,6, 205 248 1, 1Qf 1‘4 1c,35, 122 221 119 192 230
DATA 15, 198 144 39 206 64 39 95 122 15 15,15, 14 ?30

1290 DATA 15,198,144,39,206,64, 39,87,221, 114 © 221 115 64

1300 DATA 221 35,16, 198 17, 128 e, 221 25, 12 62 5,185,32,185

1310 DATA 40, 177

SOURCE LISTING FOR "NO FRILLS"

00000 ; = == sEm== =
00001 ;

00002 ; "NO FRILLS TAPE DISPLAY PROGRAM

00003 ; ASSEMBLY LANGUAGE SUBROUTINE

00004 ;

00005 ; BY DAN YERKE, NOVEMBER 1979

00006 ;

00007 ; == === ===
00008 ;

00100 ORIGIN EQU 32600 ;ORIGIN FOR ASSEMBLY

00110 SCREEN EQU 3CO00H 7SCREEN UPPERLEFT CORNER

00120 KBDRW7 EQU 3840H ; KEYBOARD ROW SEVEN:

00130 ; CLEAR, BREAK, SPACE, ENTER OR ARROWS.
00140 TAPOFF EQU 01F8H ;ROM SUBRTN: TURN OFF CASSETTE
00150 TAPEON EQU 0212H ;ROM SUBRTN: DEFINE CASSETTE UNIT
00160 TAPESY EQU 0296H ; ROM SUBRTN: FIND LEADER & SYNC.
00170 TAPEIN EQU 0235H ;ROM SUBRTN: READ ONE BYTE INTO A
00180 BASIC EQU 0A9AH 7ROM SUBRTN: RETURN W/HL TO BASIC
00190 LN EQU 64 7 CHARACTER LENGTH OF SCREEN LINE
00200 NBRLNS EQU 5 sNUMBER OF LINE GROUPS TO USE
00210 ; * * * % % % * % % % % % % % % % % * % * % * % % % %
00220 ;

00230 ORG ORIGIN ; LOAD ASSEMBLY ADDRESS

00240 START EQU $; ENTRY POINT (ALWAYS)

00250 LD HL,O0 ;7 RESET DISPLAYED BYTES COUNTER
00260 D A,0 ; USE CASSETTE UNIT 0

00270 CALL TAPEON ; TURN ON TAPE UNIT

00280 CALL TAPESY ; BYPASS LEADER & SYNC BYTE

<LISTING CONTINUED NEXT PAGE...>

2/5

00290 NEWSCR
00300
00310
00320 NEWLIN
00330
00340 OLDLIN
00350
00360
00370
00380
00390
00400
00410
00420
00430 NOKEYS
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750 LENGTH
00760

ERRATA ALREADY!

line 460 (LD

$:LOOP: START NEW SCREEN

c,0 ; RESET LINE GROUP COUNTER
IX,LN+LN+SCREEN ; POINT TO LINE 3

$;LOOP: START NEW DISPLAY LINE
B,LN ; RESET LINE-BYTE COUNTER

$;LOOP: CONTINUE CURRENT LINL
(IX+LN) ,191 ; DISPLAZY "CURSOR"
TAPEIN ; READ ONE BYTE INTO REGISTER A
D,A ; SAVE BYTE IN D TEMPORARILY
A, (KBDRW7) ; CHECK KEYBOARD ROW 7
A ; SET FLAGS

Z ,NOKEYS ; IF NONE GOTO NOKEYS
TAPOFF ; ELSL STOP TAPE UNIT,
BASIC ; AND RETURN TO BASIC.
$; CONTINUE PROGRAM

H ; DISPLAYED BYTES COUNTER + 1

2,D ; RESTORE BYTE TO A

(IX-LN) ,A ; DISPLAY TOP LINE ASCII
OFH ; MASK OFF LEFT NIBBLE TO ZEROS
A,90H ; CONVERT

; RIGHT
A,40H ; NIBBLE

H TO ASCII.
E,A ; SAVE ASCII RIGHT NIBBLE
2,D ; RECALIL BYTE SAVED IN D

; SHIFT LEFT NIBBLE

; OVER TO THE

; RIGHT NIBBLE SIDE

H FOR CONVERSION.
OFH ; ZERO LEFT NIBBLE
A,90H ; CONVERT

; LEFT
A,40H ; NIBBLE

H TO ASCII
D,A ; SAVE ASCII LEFT NIBBLE
(IX) ,D ; DISPLAY IN MIDDLE ILINE
(IX+L1) 1t ; DISPLZY RIGHT IN LAST LINE
1X ; BUMP SCREEN POINTER UP ONE
OLLIJN 3 TEST END-OF-LINE: NO - LOOP.

DE,LN+LN ; GET LINE-GROUP DISPLACFEM:NT
Ix,CE ; POINT TO NEXT 3-LINE GROUP

C ; BUMP LINE COUNTEFR UP ONE
A,NBRLNS ; COMPARE NUMBER OF LINES LIMIT
C ; TO CURRENT LINE COUNT,

NZ ,NEWLIN ; >= THEN GOTO NEWLIN.

Z ,NEWSCR ; ELSLE, GOTO NEWSCR.

$-START ; HAVE ASSEMBLER SHOW PGM-LENGTH.
START ; END ASSEMBLY, SET ENTRY POINT.

<END OF LISTING>
Some versions of EDTASM will not assemble the
(IX-LN) ,A).

In order to get around this, make

the instruction like this:

00460 LD (IX+256-1N) ,A
<END OF ARTICLE>

2/6

CAUTION! ADVERTISEMENT AHEAD...

We're convinced that the problem with learning 7-80
Assembly language is the direct result of a lack of good
source programs to serve as study guides, Remember when
You were learning Basic? Every time you encountered a
problem, there were dozens of examples to help you work it
out. Not so with assembly languace. Combined with the
fact that there are more and more intricate concepts to
understand, things have been rough going for the persons
desiring to master this excellent language. We believe
that the general availability of some programs - especially
for the TRS-80 - will aid to better all who choose to
investigate this fascinating field, ideally providing
faster and more competent progrars down the rcad! For this
reason, we have been encouraging authors to make the EDTASM
source code available, at least as an option. And, we're
proud to say, we've been successful!
hhkkkhkhkhkk
Z-80 Source Code from
The Alternate Source!

Each source listing listed below is a valuable tutorisl in
itself! All preograms are designed for the TRS-80 and
include a Z-80 source file!

*** DVR--a Driver package that adds several features to
the TRS-80 including: screen echo to printer, repeating
key, lower case driver and more! Level 1II or Dos.
Cassette. $15.95; diskette, $18.95. Also, DVR now works
with NEWDOS !

%% KEEPIT--Level II only! Preserves your program from
any execution point. Excellent for debugging and saving
current program status. Cassette only, $9.95.

**%* COPYDISK--a program which allows copying of several

DOS files at once with no system diskette! Complete Disk
I/0 routines! Great for diskette library maintenance &nd
single drive owners! On cassette, $17.95; diskette,;
$20.95.

**% MICROSKETCH 1II package--Microsketch, Microscreen and
Screen Save Utility. These three programs (on 3 tapes)
make graphics as easy as 1-2-3! All 3 programs sell for
$23.85. 1Included FREE are the source codes for FIFTEEN
machine language subroutines that are utilized! If you're
already a Microsketch owner, purchase the two support
packages and the source codes for the fifteen machine
language utilities for only $19.85 total! N

Owners of DVR and COPYDISK may return original medie
and purchase the source codes for the difference in price!

Mail your order to: TAS SOURCE, 1806 Ada street,
Lansing, MI 48910. Visa and MC accepted by phone
517/487-3358. Include 50 cents per program for First Class
Mail. More to come!

2/7

>>>>>>>>>> SOUNDEX <<<K<LL<K
A TRS-80 SOUND UTILITY

By Foxton Baker, 56 South Rd., Ellington, CT 06029
(Software in the Public Domain)

The SOUNDEX utility was written to make it easy for
BASIC programmers to add sound to their programs. This
machine language driver can be poked anywhere in memory
and can even be embedded in one cr two lines of BASIC at
the beginning of a program. Once it is available,
cassette-port sounds can be generated with the USR call
under Disk or Level II BASIC.

The SOUNDEX driver offers tone-producing capability to
the programmer. Complete ready-made sound effects are not
available in it. It is up to the programmer to generate
these by appropriate calls to SOUNDEX from BASIC. A
compromise has been made between code length, simplicity,
applicability, and ease of use on one hand, and overall
sound capability on the other. SOUNDEX does offer the
following features to the software author considering the
use of sound:

It is easily called from BASIC via the USR command.

It works identically under Level II or Disk BASIC.

It is completely relocatable, and thus can be poked
anywhere in memory without reassembly.

It offers a wide range of fregquencies (0 to 8 KHz).

1t offers a number of different "sounds", both loud
and soft.

It is suitable for embedding into string space or REM
statements (no need for memory protect).

It is short (72 bytes).

And

It is NOT copyrighted (though author credit in & FEM

line is requested).

HARDWARE

The computer's cassette cutput line (the large gray
plug that goes to the recorder's AUX input) is what carries
the sound. It can provide enough power to drive a small
earphone or set of headphoies directly. For more volume, a
separate amplifier and speaker should be used. One
low-cost posibility is to connect a speaker to the
recorder's "EAR" output, and to set up for a CSAVE as
usual, with the recorder in the RECORD mode and the AUX
plug in place. This works well with the CTR-80; I'm not
sure about the CTR-41.

Radio Shack also offers a "Microsonic" box, cat. no.
277-1008, which can be plugged into directly. It runs from
a battery, has it's own amp and speaker, and costs about
$11.00.

2/8

The best sound of all results from connecting the
cassette output to a nice, powerful hi-fi system. Phaser
blasts through this can really shake up the troops.

USE OF SOUNDEX

Once the sound driver has been put in memory (as
described later), calling it from BASIC is fairly simple.
The user must first specify TONE DURATION, which is done by
writing:

X = USR (44)

In this, X is a dummy variable. Any variable name can be
used instead. The value "dd" must be a number between -1
and -32767. The larger in magnitude this number is, the
longer the tone will be. The range is 0 to 2 seconds.
Once a duration has been specified, it will control all
subsequent tones until a new duration is specified.

To actually generate a tone, the user would then
write:

X = USR (pp)

As before, X is a dummy variable. The value "pp" can be
any number between 1 and 32767; it defines the PITCH of the
tone that is generated. The larger the value of pp, the
lower will be the pitch of the tone. Actually, only values
for pp between 1 and 100 or so are useful. A blank, or
silent, tone is easily generated by using a value of 0 for
pPpP.

As an example, the following statements in a BASIC
program would put out two tones. The first tone would be
long and low-pitched, the second tone short and
high~pitched:

10 X=USR(~-20000)
20 X=USR(50)
30 X=USR(-2000)
40 X=USR(2)

If line 30 were deleted, both tones would be long.

The USR calls are simple enough, and often they are
all that will be used.

There are a few preliminaries and options, however.
First, the user must select a "voice" or type of sound by
poking a value into address 16672. This value can range
from 0 to 255, but only ten different values give distinct
sounds. These are:

1 5 6 17 18 22 25 86 90 102

Some of these do not give different types of sound; they
give a tone of twice the normal pitch. Just as with TONE

2/9

DURATION, the voice need not be respecified until a
different one 1is desired. As an example, near the
beginning of a program, the user might write:

POKE 16672,18

All tones generated after this would be fairly smooth "gine
wave" approximations. For a noticeably softer tone, he
might write POKE 16672,5. For a thin, reedy sound he would
use POKE 16672,25.

Under Disk BASIC, the user has the option of disabling
interrupts with CMD"T". 1If he doesn't, the tones will all
have a '"popping" quality about them, not unlike radio
static.

By working with a combination of tone duration, pitch,
voice, and speed of call from BASIC, one can eventually
arrive at a suitable sound effect for almost any
application.

Although usually of no concern, there is one further
option available to the user. Under BASIC it is possible
to use OUT 255,4 or OUT 255,12 to turn the cassette motor
on. SOUNDEX will normally turn off the cassette motor
whenever it is called. Should the user wish to run the
cassette during his program (possibly even during the
generation of sound), he should inform SOUNDEX of this fact
with a POKE 16697,4. To go back to having the cassette
motor disabled, POKE 16697,0.

Finally, one must of course define the USR entry point
at the beginning of the program. This is discussed in the
Level II and Disk BASIC manuals. The address to be wused
depends on where SOUNDEX has been placed in memory. The
start of SOUNDEX is its entry point.

Note that SOUNDEX achieves its relocatability by using
as temporary data storage six bytes in low memory - the
"reserved" section of RAM, These bytes are hex 411C-4120
and 4139. It is believed that these are unused by Level II
or any DOS.

CREATING THE SOUNDEX CODE

Probably the easiest way to get the 72 bytes of code
into memory is to POKE it in with a BASIC program like the
one listed at the end of this article. If high memory is
to be used (the usual approach), then MEMORY SIZE must be
answered to protect the code from BASIC. To place SOUNDEX
at the top of memory, appropriate numbers would be 32695
for 16K, 49079 for 32K, or 65463 for 48K. If TRSDOS 2.2 is
used, subtract 51 from these.

Since SOUNDEX does not contain any zero bytes, it is
feasible to poke the code into a dummy REM statement
instead. Then memory protection is not required, since
SOUNDEX is an integral part of the BASIC program itself.
This technique is presented later.

The program listed may look complicated because it has
been set up to handle different combinations of BASIC level
and memory size. Any single application will really

2/10

require only the READ, DATA and POKE statements; these can
be extracted and used as needed in the user's program.

As an example, one might wish to have sound in a 16K
Level II game. MEMORY SIZE would then be set at 32695,
assuming there are no other high-memory machine language
routines to be used. If there were, SOUNDEX would have to
be located below then, with a lower memory protect. Once
into BASIC, the program below would be loaded and RUN. The
SOUNDEX code could then be saved as A SYSTEM tape wusing
TBUG. This SYSTEM tape would, later, be loaded in
conjunction with the user's BASIC program.

A Dbetter alternative would be for the user to
incorporate the DATA statements into his own prograr, and
POKE them into (protected) high memory himself, starting at
32696,

Either way, once the code was in memory, the user
would define the USR entry point (32696) to BASIC with:

POKE 16526,184 : POKE 16527,127

as explained in the Level II manual.

Finally, in his program, the user would specify a type
of sound - perhaps POKE 1672,17. At this point, sound
could be generated via the USR calls described earlier.

STORING SOUNDEX IN A REM STATEMENT

The advantage to poking a machine language routine
into the space normally reserved for a REM statement is
that the code becomes part of the BASIC program, Memory
protection is not required. Furthermore, it is possible to
save the BASIC program with the code in it, meaning that it
never again need be poked in. The READ, DATA, and POKE
statements can be deleted. The machine language has becone
a permanent part of the "target" program,

Although in theory any machine language code can be
put into REM statements, the process gets difficult for
code that is lengthy or that contains bytes with the value
00. SOUNDEX does not present these problems, and since it
is the subject of this article, it will be used as an
example.

Briefly, the technique used is to put a dummy REM
Statement in the target BASIC program as the first line.
Line number 1 is used for this line to keep anyone from
ever putting another statement in ahead of it, which would
dislocate it. Then the SOUNDEX code is poked, by the
target program itself, into the space that was allocated to
the REM line. Note that the REM must have at least as many
dummy characters in it as there are bytes in machine code.
Finally, the USR entry point is defined to point at the
string of code now in the REM line.

As mentioned above, this poking can be done by the
target program every time it is run, or it can be done just
once after which the DATA, READ and POKE statements can be
deleted, and the target program saved.

2/11

The advantage of the former is that the program
remains entirely listable and readable, whereas if the
program is saved after the code has been poked into line 1,
that line will not list properly. Nor can the program then
be saved as a disk ASCII file, meaning that some
renumbering utilities will not work with it.

Either way, the first line of the user's target BASIC
program should be:

1 REM****x%%*%%% (continue for 72 *'s total) ¥rx*xkExk

These dummy *'s (any character could be used) reserve
enough space for the SOUNDEX code. Next, it is necessary
to locate the address of the first asterisk so that the
poking of SOUNDEX can begin there. This address is fixed
in the sense that we are always using the first line; but
Level II, TRSDOS and NEWDOS all put the first line at a
different place. However, they all point to it the same
way - its address is kept at locations 16548, 16549. The
first asterisk is always the fifth byte in the first 1line,
so it's address (and thus the location for the first byte
of SOUNDEX) is simply:

PEEK(16548) + 256*PEEK(16549) + 5

This is also the address that should be defined as the
USK entry point using DEFUSR in Disk BASIC or its POKE
equivalent in Level II.

Putting this all together, the following lines of
BASIC, placed at the beginning of the user's target Disk
BASIC program, would serve to embed the SOUNDEX routine
into the program. After running the program once, the user
could delete 1lines 4 through 12, and save the target
program with the machine language now permanently
integrated intc it. In fact, lines 1, 2 and 3 could be
saved alone as a "sound preamble" that could be put at the
front of any Disk BASIC program to give it sound.

1 REM*******(72 *'S total)********* cee

2 S=PEEK(16548) + 256*PEEK(16549) + 5

3 DEFUSR = S

4 FORJ = 1 TO 72

5 READ X

6 POKE S+J-1,X

7 NEXTJ

8 DATA ..cesecsossnss

O DATA seccocososcane Note: These are the same
10 DATA v.eveecoessccsne data statements as in the
11 DATA ceevecessssnsn program on the next page...

12 DATA ceessvcosnoss
13 and so on=--user's program
from here on out

The above is for Disk BASIC; line 3 would have to be
changed for Level II. For an example of how to convert a
decimal memory address into the correct POKE statements for
setting up a Level II USR entry address, see lines 200
through 280 in the program on the next page.

2/12

300
310
320
330
340
350
360
370
380
390
400

410
420

430

PROGRAM TO POKE SOUNDEX INTO MEMORY

REM >>>>>> SOUNDEX <<<<<<

REM BY ROXTON BAKER - NOT COPYRIGHTED

CLs ‘
DEFINT J,K,L

INPUT"WHAT MEM SIZE DID YOU SET ";DS
REM SOUNDEX WILL START AT MEM SIZE PLUS ONE
Ms = DS

IF MS>32767 THEN MS=MS-6553¢

REM POKE THE 72 BYTES IN

FOR J = 1 T0 72

READ K

POKE MS+J,K

NEXT J

REM NOW SEE IF WE'RE IN LEVEL IT OR DISK BASIC

IF PEEK(16433) = 0 THEN 200

REM MUST BE DISK

cMD" "

DEFUSR=MS+1

GOTO 290

REM IT'S LEVEL II

N=DS+1

REM CHANGE N FROM DEC TO HEX FOR USR ENTRY POINT POKE

FOR I = 1 TO 4

D(I)=INT(N/16[(4"I)) ________ . L B

N=N-D(1) 16 [(4-I) O thett M Tones
NEXT I

POKE 16527, 16*D(1)+D(2)

PORE 16526, 16*D(3)+D(4)

REM CHOOSE SQUARE WAVE FOR DEMO

POKE 16672,102

REM THIS IS THE BIG DEMO . . .

X=USR(-100)

FORL=65T0O1 STEP-1 : X=USR(L)
FORL=1TO70 STEP 2 : X=USR(L)
REM

REM THESE FIVE DATA STATEMENTS CONTAIN THE

RELOCATABLE CODE OF SOUNDEX:

REM

DATA 205,127,10,203,124,40,4,34,28,65,201,34,30,65
DATA 219,255,31,31,31,47,230,248,95,58,57,65,254,4,

32,2
DATA 171,95,58,32,65,87,237,75,28,65,43,124,181,40,6
DATA 221,227,221,227,24,12,42,30,65,122,7,7,87,230,
3,179
DATA 211,255,3,120,177,32,228,123,211,255,201

NEXT
NEXT

-
.
-
.

<END OF LISTING>

2/13

LETTERS !
Dear Sirs:

I see that you are selling Donald Knuth's series of
books. I've written a MIXAL simulator/assembler which
would go nicely with these. It requires 32K (48K for full
4000-word MIX memory), preferably disk. I would be willing
to send a copy (for duplication costs) to anyone who
writes.

Sincerely,

Phelps Gates

6 Crestwood Tr. Pk.
Rt. 4

Chapel Hill, NC 27514

(Thanks Phelps. I've received my copy and am looking
forward to giving it a workout!--Kos.)
kk Kk kok kK

Gentlenen:

Your Hangman game in your first issue is excellent,
but it has bugs!! I had a tough time getting your program
to work properly. I inserted a number of remarks as an aid
to studying the program, and I also renumbered your program
to add a zero to each of your line numbers.

The program's biggest problem is that it lacks
randomness. I have also corrected this flaw by employing a
technique that I learned from Steve Macgregor. It forms
the data words into an endless chain and the computer makes
a selection from that chain, depending on the instant a key
is pressed. Incidentally, there is no need for the quotes
around the data words as shown in line 36 of your program.
Flimination of these simplifies typing data statements.

I will be glad to reproduce the tape and listing for
any of your readers for two dollars to include postage.

Sincerely,

C. W. Evans

9806 Amber Trail
Sun City, AZ 85351

(In our thus far short 1life span, CW has offered many
suggestions and comments. I got a feeling we'll be reading
some of his fine work in a future issue!--Kos.)

ddkk ok kkdokhd

Dear Joni:

I enjoyed my first copy of your publication, and am
looking forward to future issues. Dennis Kitsz and I have
shared ideas in the past and I was pleased to see his
contribution.

A suggestion. There does not seem to be much
available (as far as I can find) on the use of DCBs for the
TRS-80. I am belatedly learning that much machine language
programming involves these blocks and that area of memory

2/14

between 4000H and 4300H. I would sure appreciate a
detailed article explaining the Device Control Blocks and
their use,.

Please remind your editors that many of us inspired
"Computerists" are relatively speaking, still novices. As
an example, the article on "Cursor Control" must be written
for Disk Basic, though nowhere in the article or program is
this fact mentioned.

Sincerely,
John Painter
Silver Springs, MD

(John, the main technique in Cursor Control is applicable
for both Level II and DOS. Both store the current cursor
location in the same area of the VCB. About the Control
Blocks, I refer you to Allan Moluf's Ramstuff article this
issue as well as our ad for source programs. Allan's work
is ideally setting us up for exploration of many of these
areas in future issues--we have one program demonstrating
them that's a real KILLER! Hold tight!-Kos,)

******‘k**‘k********

TAS BULLETIN BOARD

Richcraft Engineering, Box 1065, Chautaugua, NY 14722
advises of the availability of:

—-W4UCH TRS-80 Morse Code Transmit & Receive Program: no
ancillary devices required, 5-25 words per minute, 20
prepared "Q" signals, auto-logbook, code practice, and
much-much more. $15.00 cassette or disk postpaid.

~~TRS-80 Disassembled Handbook: $10.00 postpaid.

-=TV Satellite az-el-range (send your lat/longitude) :
$5.00 postpaid.

=-Multi Base Both-Way Conversion Program: decimal~binary-
hex-split decimal-split hex; $10.00 cassette or disk.

Phone (716) 753-2654 for COD orders.

Blechman Enterprises, 7217 Bernadine Ave, Canoga Park, CA
Zip 91307, advises of the availability of:

—-Telephone Dialer Program: store up to 500 names and
numbers in 16K memory; request an alphabetized list;
or one desired name; will even dial for you with the
addition of a simple external interface (no modification
required!). Keeps track of time and computes charges.
And more. Detailed instructions. $10.00 postpaid. ca
residents add tax.

~=-TRS-80 Programs for Amway Product Distributors (no disk
or printer needed!) A money making opportunity! Four

2/15

programs put you in business, providing data services
for Amway Distributors. There's one near you, and they
need your help! $24.95 covers all four programs and
postage. Write for details!

Club-80 Newsletter Fxchange, Box 38, Douglass, KS 67039
tells us they assist groups in exchanging newsletters and
disk files. Users groups should investigate, as this is an
excellent method of sharing news, - ideas and programs.
Phone Laris Pickett at (316) 746-2650 for more info.

R. E. Henley, 4530 N. 16th St., Omaha, NB 68110, advises
that he is available for contract programming. Persons
needing customized programs are encouraged to contact him.

David K. Forbes, 3241 Briarcliff Drive, Anchorage, 2K, zip
99504, would be interested in any comments (pro or con) on
the Microtek MT-80 printer. He would also 1like a 100%
reliable method of determining that the <BREAK> key has
been pressed. (To be used in machine language under TRSDOS
2.2 -- method must intercept the <BREAK> prior to any
action by DOS, such as a reset.)

Mr. Forbes will also consider free-lance software develop-
ment on a custom basis. He relates the following qualifi-
cations: 12 yrs programming experience, 8 professionally,
FORTRAN, BASIC, Assembly Language, APL, COBOL. He has an
in-house TRS-80, and has previously developed commercial
software for businesses (references on request). He works
cheap 'mostly for fun after work', but will require a
written specification of what the software is to do, and a
contract.

Management Systems Software, Inc. has released two new
business applications--PROFORMA CASH BUDGET and a LEASE-
BUY PROGRAM. Both have significant documentation, are
written by a professional educator, and have been tested
for over 6 months to insure an error-free product.
Briefly, PROFORMA CASH BUDGET will forecast cash needs for
up to 12 periods, by specifying up to 25 different cash-
inflows and 25 different cash-outflows. The LEASE-BUY
Program evaluates the typical lease versus purchase
decision, relates current tax laws and the impact of
investment tax credit on this type of decision. Persons
interested may obtain more information by writing: 5200
Brittany Drive, #1006, St. Petersburg, FL 33715

Allen Blanchard, of R.G.S. Supermarkets, Inc. would be
interested in a program which would enable his cashiers to
readily determine whether or not a check-cashing card
produced by a customer should be honored or not. Several
thousand cards are involved, and lists are updated daily.
If anyone can help Mr. Blanchard, he can be contacted at
1001 Barrow Street, Houma, Louisiana 70360.

2/16

A REPORT ON THE STRINGY FLOPPY
By Roger Fuller

The long sought after missing 1link between cassette
and diskette storage has been discovered by Exatron--The
Stringy Floppy. When my first unit arrived, I quickly
unleashed it from its box and promptly broke it--the edge
card connector on the string's ribbon cable is not the
exact size as the edge card on the TRS-80 (which is thicker
than normal). Results: a torn contact caused by a slight
burr on a trace of the TRS-80's card edge. When finally I
got a new connector, I found the pins on the 80 were upside
down. After carefully crossing pairs of ribbon cable wires
and pushing them onto the contact prongs one at a time, I
had the Stringy working.

The Stringy Floppy loads and saves data at 7.2
kilobaud, about 15 times faster than cassette. The data is
stored sequentially on an endless loop of narrow chromium
dioxide tape, mounted in a tiny plastic "wafer" cmaller
than a business card. The actual recording is done using a
self-clocking bi-phase method, the same technique used on
floppy disks. However, since the Stringy wuses only one
track at 10 ips versus 35+ at about 30 ips for disks, the
Stringy is more reliable.

The Stringy operating system (S0S) is stored ir 2K
EPROM mapped to the unused, reserved 1I/0 addresses, and
uses ports 240-247, depending on the number of drives. RAM
usage is just 4 bytes between string space and reserved
high memory. The SOS is linked to Level II or Disk Basic
by a jump using BASIC's SYSTEM command. After loading SOS,
respond with an easy-to-remember "/12345" and you get the
sign-on message. The S0S does not use any reserved words,
since all its commands are preceded by an "@",

Exatron sells extra wafers in standard sizes of 5, 10,
20 and 50 foot lengths for $2.00 each in boxes of ten. The
wafers can be checked for dropouts by the 'NEW command;
this will erase all files on the wafer. A 5 foot wafer
will load 4K of data in 6 seconds. The S0s will
automatically verify an @SAVE; thus the time is doubled
when saving data. This is independent of the length of
your program. Thus, a one line program could take almost
two minutes to save on a 50 foot wafer, the worst case
occurance. The SO0S allows expressions to specify both
drive number (0-8) and file number (1-99). Included with
the Exatron Stringy Floppy (ESF) is a data I/0 program
which gives the Stringy owner a file handling capability.
The new commands are: @CLEAR, QOPEN, @CLOSE, @INPUT, and
@PRINT. This 1000 byte machine language program patches
itself into RAM just as the 4 byte work area does.

One of the unique features of the ESF is the ability
to @SAVE memory. You need only specify the start address
and length of data in decimal form. Also an auto start
address may be added, if desired. I can see a teacher

2/17

(such as myself) storing records for an entire class on a
wafer, updating them, and re-storing the whole memory out
on tape. This would eliminate all the bother and extra
coding required to keep up with the changing data.

The ESF can chain programs in BASIC, leaving the old
values computed by the original program intact and
accessible. This is possible by use of overlays of new
programs @LOADed by the old one. If you @LOAD inside a
program, the new program is loaded and executed just like a
statement. This one feature could make living in a non-DOS
16K machine acceptable for many people.

The TRS~-80 is the VOLKS-COMPUTER, but its wusefulness
in applications requiring data handling beyond a single
dedicated program is limited. A business man who sees
Radio Shack's $499 ad is misled to believe this will
"computerize” him. He is usually surprised to find the
total cost is nearer $2000. The Stringy brings that cost
down to under $1300 for 16K and ESF. If I wrote programs
for businesses, I would order an ESF just because of the
market it can open for my software.

The ESF has drawbacks like anything else. One problem
is the way files must be handled sequentially. This is a
possible hazard for the sloppy user. You MUST keep an
accurate record of what is where, on which wafer, or you
might just lose something important. This can be reduced
by using a wafer per program, but $2.00 each is gquite high.
Even so, the cooperation of Exatron with their customers
can outweigh this in terms of support. The Exatron company
provides an SOS version of the Electric Pencil for only
$10.00 more than the normal price. If you are wondering
whether or not you need a disk or are tired of cassette
problems, think about an ESF. At $249.50, it is a bargain.

<END>
*******************:’:*******************************w********

SAVE 15% I!

TRSDOS users! Now you don't have to buy a mnew
operating system to enter '7AP's into your system! Here's
a package especially designed to permit file recovery and
system manipulation for 2.2 and 2.3 users! Check it out:

1. H. C. Pennington's "TRS-80 Disk & Other Mysteries".
The disk owners bible. What more can we say? Lists for
$22.506. 2. 780ZAP--the MACHINE LANGUAGE monitor that
contains valuable file recovery functions, hash code
computation, and disk examine & modify functions. Lists
for $29.95. 3. For fast delivery , First Class Postage.
$2.25.

TOTAL LIST VALUE: $54.70
COMBINATION DISCOUNT: $9.70
YOU PAY ONLY: $45.00 !!

Over 15% discount for ordering both! If 4th class postage
is OK, deduct $1.75. Mail your order to: TAS Combo #1,
1806 Ada Street, Lansing, MI 48910. For fastest service,
call now! 517/487-3358

2/18

B17 REVIEW
By Dan Poorman

We all know the reputation the TRS-80 has for cassette
loading problems. Especially us Level II folk. So, when I
first heard about B17, it sounded like a dream come true'!

Yes, it works. Quite well, as a matter of fact, and
it does save a heck of a lot of time. B17 is a bit of
software magic that costs $25.00 and makes reading and and
writing to tapes quite a bit faster than the 500 baud rate
that we're used to. As a matter of fact, the 'b' in B17
stands for BAUD, and the '17' indicates 1700 baud; over
three times faster than our usual 500 baud rate. ABS
Suppliers (the originators of B17) actually claim the
program operates at 2125 baud, the highest rate that can be
accommodated by the TRS-80 electronics. T didn't find any
reason not to believe it.

I'll admit that I can't really measure the baud rate
accurately, but I can tell you this much: Using B17,
programs--both SYSTEM and BASIC--load in one third of the
time with no problems at all. My modified Radio Shack
Editor/Assembler loads in 44 seconds when under B17
control. Invasion will load in approximately 73 seconds,
compared to it's usual 201 seconds. Before, my RSM-2 took
87 seconds, now it zooms into memory in about 27 seconds.
Sargon zips into memory in just 68 seconds, compared to
it's standard two minute and 38 second time.,

Like everything else in this world that's good, there
is a small price to pay (and I'm not referring to the
$25.00, either); B17 is no exception. If your TRS-80 has
the XRX-2 cassette loading modificatior by Radio Shack,
you'll have to bypass it in order for B17 to work. It's
not difficult at all to do, it just means breaking the seal
on your machine~--a move that does not impress Radio Shack
service folks, should you ever need service on your
computer.

If your computer does NOT have the modification, B17
is strictly a software routine.

I do have the XRX-2 modification, and did have to
bypass it. Installing the switch took me about 10 minutes,
and is quite simple to do, following the instructions that
come with the program. After that, duck soup. The program
works beautifully loading and writing tapes at high speed,
and if I don't use B17, it's just a matter of throwing the
switch (I installed) to the opposite position. This move
activates the XRX-2 modification once again, and I can 1load
500 baud tapes nicely.

The B17 program requires a SYSTEM load, the file name
being 'B17'. The cassette comes complete with various

2/19

modules for loading both BASIC and machine language
programs, and for machines with up to 48K of memory. I
doubt that anyone would have 48K of RAM and not have disc,
but the lads at ABS have a program for everyone.

At first, you'll see the familiar asterisks blinking
up in the corner. When it shifts into high gear, you'll
see, instead of the asterisks, an 'I' and an 'C' with a zrow
of arrows in between. When B17 is inputting, the arrows
will be pointing and moving towards the L When
cutputting, exactly the opposite. Neat touch, T think.

After duping the modules you need--in my case, 16K
BASIC and high and low memory system--you are ready to
convert your programs.

In BASIC, you set mercry size to 31750 and load the

BASIC B17 module. Then load the BASIC program. After
loading the BASIC program, 1ist it to make sure it loaded
correctly. ANOTHER IMPORTANT NOTE: If the program is

long, DO NOT run it! B17 takes up a little over 1K of
memory, and you might not have enough room for RUNning, if
the program has any arrays or needs a lot of string space.
Once the program is loaded, slip a new tape into the
recorder, push both the PLAY and RECORD buttons, type SAVE
"filename", and you're on your way. After a short 500 baud
pre-loader (this is written onto every B17 produced tape)
you'll see the B17 verifier in the upper right hand corner,
with the arrows pointing and moving towards the '0' for

output.

Once the program has been converted, you can verify it
by typing 'LOAD?' in BASIC or using the ‘'V' command in
machine languaye.

One of the nicest things about the program, I feel, is
the LOAD AND GO option for system tapes. When you use the
SYSTEM module, you can tell it the execute address, and
when it is finished loading the program executes
automatically!

Are there any negative points? Yes. My Adventure
progran--one that takes over four minutes to load and needs
E17 badly--is too long to fit in my 16E. machine along with
the module to convert it. If I had 32K, there wouldn't be
any problem, but I don't.

Other considerations, both good and bad: The program
does not support a filename search, although it requires
one to be input, even for the first program on the tape.
When using B17 even without the XRX-2 modification, the
level of the recorder is non-critical. You can always tell
if there is a loading problem by watching the arrows up in
the corner.

I guess the big question about any software is whether
or not it's worth the price. In this case, you have a

2/20

program that you will undoubtedly use every single time you
load or write a program to or from tape. True, it will set
you back $25.00, but that's beans compared to the purchase
of a disc drive and interface expansion. B17 is neither as
fast nor as versatile as disc, since it won't support data
files, but it is certainly an improvement over the normal
TRS-80 computer's cassette input and output.

Before «closing, I will also pass along that ABS
Suppliers tells me they'll soon be releasing a 'B29' that
will allow the Editor/Assembler to read and write at the
1700 baud rate. That will bear watching for, as it just
might make Assembly Language programming for the TRS-80
Level II nmore enjoyable, instead of an exercise in
patience.

(B17 is available from TAS, or can be ordered directly
from ABS Suppliers, P.O. Box 8297, Ann Arbor, MI
48107--Kos.)

<END>
**

THE ALTERNATE SOURCE (NEWS) LETTER

is in it's first year of publication. We are bi-monthly
this year for one especially important reason: We intend
to meet all deadlines, publication and otherwise. Also,
there are many projects we are currently undertaking:

1. Coordinating information about a variety of
software packages.

2. Seeking te¢ provide suppcrt for existing
software packages.

3. Providing a viable communication media
between users, programmers and vendors--without
costing an arm and a leg,

4. Giving you a valuable resource to find the
answers for questions rot answecrakle elsewhere.

Won't you join wus? Subscriptions to TAS are
minimal--nine dollars for six issues, Throughout your
tenure as a subscriber we have several ideas that should
make your subscription pay for itself~-from various
bargains on software and other info from time to time, to
dynamite programs you can key in, +to bulletins on the
latest rumors!

We appreciate your support. And, we'll do our best to
help you prove your TRS-80 is the excellent investment you
always knew it was!

To subscribe, mail $9.00 with your name and address
to: THE ALTERNATE SOURCE, 1806 Ada Street, Lansing, MI
48910. If you're not thoroughly convinced, $2.00 will get
You a copy of TAS #3,

2/21

DISKMAP
By Larry Sylvia

(Larry's article was submitted by a friend, Fred
Smith, who thought it should be published. After running
it, we agreed. The article/program itself is sparsely
documented, but this is because the program itself
describes what is being displayed. We intend this to be
one of several pieces of info relating to the all-important
DIRECTORY track, #17 on most operating systems for the
TRS-80.

Several tidbits have appeared explaining how to
reclaim lost files--but only when working through the
directory. Larry's program prints out which file is in
each granule--a very important consideration, especially
with 2.2 and 2.3, which completely eliminate the directory
entry.

Incidentally, this program was written for a 40 track
Percom drive, but works £fine with 35 track drives--just
don't become confused as the printer continues to print
beyond the 35 tracks expected !--C.W.)

DISKMAP LISTING

10 CLS:PRINT" NEWDOS+ DIRECTORY SUMMARY PROGRAM"

20 FORI=1TO 5:PRINT:NEXT

30 INPUT"THE OUTPUT OF THIS PROGRAM IS DIRECTED TO A PRINTER.
MAKE SURE THE PRINTER IS ON. PRESS <ENTER> WHEN READY TO
PROCEED. "X

40 LPRINT" NEWDOS+ DIRECTORY SUMMARY PAGE 1":
LPRINT

50 LPRINT"THE 2-GRANULE, 10-SECTOR(0-9) DIRECTORY ON TRACK 11
(HEX) , CONSISTS OF:"

60 LPRINT"SECTOR 0 - GRANULE (GRAN) ALLOCATION TABLE (GAT-SECTOR)

70 LPRINT"SECTOR 1 - HASH~CODE INDEX TABLE (HIT-SECTOR) "

80 LPRINT"SECTORS 2 THRU 9 - CONTAINING 'DIRECTORY ENTRYS' AS
FOLLOWS : " s LPRINT

90 LPRINT" 2 LINES (32 BYTES) PER ENTRY (IF FIRST 2
BYTES=0000, FILE IS DEAD),"
100 LPRINT" 8 ENTRYS (FIRST TWO FOR SYSTEM) PER SECTOR

(8*8 SECTORS=64 TOTAL) .":LPRINT

110 LPRINT"IN THE DATA BELOW, THE 1ST COLUMN DENOTES THE
DIRECTORY SECTOR, THE 2ND COLUMN DENOTES THE ENTRY (0-7)
WITHIN THAT SECTOR. THIS IS FOLLOWED BY"

120 LPRINT"THE NAME AND MODIFIER OF THE FILE. THE NEXT COLUMNS
CONSIST OF PAIRS OF (8-BIT)BYTES. THE 1ST BYTE DENOTES THE
STARTING TRACK FOR THE FILE. THE"

130 LPRINT"FIRST 3 BITS OF THE SECOND BYTE DENOTES THE TRACK
GRANULE THAT THE FILE STARTS ON (0=1ST GRANULE, 1=2ND
GRANULE) . THE RIGHT-MOST 5 BITS PROVIDE"

140 LPRINT"THE NUMBER-1 (ADD 1 TO IT) OF CONSECUTIVE GRANULES.
FOR EXAMPLE, SYSO HAS 22 (=00100010) FOR ITS 2ND BYTE.
THEREFORE, SYS0 STARTS ON TRACK 0,"

<LISTING CONTINUED NEXT PAGE>

2/22

150

160
170
180
190
200
210
220
230

250

260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610

620

LPRINT"2ND GRAN, FOR 3 CONSECUTIVE GRANS. SYS2 IS ON TRACK
10, 2ND GRAN,ONE GRANONLY. DIR IS ON TRACK 11, 1ST GRAN,
2 GRANS LONG.":LPRINT

DEF INTA~Z : CLEAR1000

DIM F$(16,13)

DIM FF$(80)

s $:u "

FOR D=0 TO 80:FF$(D)=S$:NEXT

H$="0123456789ABCDEF"

OPEN "R",1,"DIR/SYS"

ON ERROR GOTO 750

FOR L=1 TO 8 :

FIELD1,(L~1) *32 AS D$,1 AS F$(L,1),2 AS D$,1 AS F$(L,2),
1 AS F$(L,3),8 AS F$(L,4),3 AS F$(L,5),2 AS F$(L,6),2 AS
F$(L,7) ,2 AS F$(L,8),2 AS F$(L,9),2 AS F$(L,10) ,2 AS
F$(L,11),2 AS F$(L,12),2 as F$(L,13)

NEXT

ON ERROR GOTO 0

FIELD 1,255 AS D$
L=VARPTR(D$) : L=PEEK (L+ 1) +256 *PEEK (L+2) : L=L,~33

POKE L+15,&H11 : POKE L+16,&H01

POKE L+14,0 : POKE L+13,10 : POKE L+9,0

ON ERROR GOTO 670

FOR %Z=3 TO 10

GET 1,2

FOR F=1 TO 8:V=ASC(F$(F,1))

IF V=0 THEN 540

LPRINTZ-1;F-1;

IF V=144 THEN LPRINT," "; :GOT0400
LPRINTF$(F,4) ;"/";F$(F,5) ;" ",
FOR VV=9 TO 13

IF F=8 AND VV=13 THEN 510
CC$=F$ (F,VV)

C=ASC(LEFT$ (CC$,1))

IF C=255 THEN 530

IF C<254 THEN 480

C=ASC(RIGHT$(CC$,1))

LPRINT " "; (C AND 7)+2; (CAND224) /32; : GOTO530

GOSUB 690:LPRINT" ";

NEXT

GOTO 530

CC$=CHR$(PEEK(L+33+254))+CHR$(PEEK(L+33+255))

GOSUB 690

LPRINT

NEXT F

LPRINTSTRING$ (64,"-") ;

NEXT Z

LPRINT

ON ERROR GOTO 0

CLOSE ;
FORI=1TO12:LPRINT :NEXT

LPRINT" NEWDOS+ DIRECTORY SUMMARY PAGE 2": '
LPRINT

LPRINT"IN THE DATA BELOW, THE 1ST COLUMN DENOTES THE TRACK
NUMBER ON THE DISK. THE 2ND AND 3RD COLUMNS DISPLAY THE
FILES ON EACH OF THE TWO GRANULES ONEACH TRACK.":
LPRINT : LPRINT

<LISTING CONTINUED...>

2/23

630 FOR D=0 TO 78 STEP 2

640 C$=CHR$(D/2):GOSUBGBO:LPRINT" " ,FF$ (D) ,FF§$ (D+1)

650 NEXT

660 STOP

670 RESUME 350

680 LPRINTMID$(H$,((ASC(C$)AND240)/16)+1,1);
MID$(H$,(ASC(C$)AND15)+1,1);:RETURN

690 C$=LEFT$(CC$,1):AT=ASC(C$):GOSUB 680 :C$=RIGHT$ (CC$,1) :
AR=ASC (C$) :GOSUB 680

700 AT=AT*2:AD=(AR AND 224) /32:AC=AR AND 31 :AT=AT+AD

710 FOR LL=AT TO AT+AC

720 FF$(LL)=F$(F,4)+"/"+F$(F,5)

730 NEXT

740 RETURN

750 RESUME 270

<END OF LISTING>

piskmap produces a map similar to that found on page
35 of H. C. Pennington's "mRS-80 Disk & Other Mysteries".

+i:1’:*******

NEWDOS~-80 !!

Now in the final stages of preparation! Here's the
scoop: NEWDOS-80 contains many, many improvements over
NEWDOS+! It also includes new features, such as: New
parameters for BASIC! 256 byte fielding! Set BREAK, LIST
or PASSWORDS on or offl pU--duplicate line numbers !
Accomriodates 35, 40 and even 77 track formats! Even the
Users Manual is improved! All this and more, and you can
reserve yours today!

The Alternate Source was the first dealer to place an
actual order for NEWDOS-80; you can receive the fastest
delivery possibde by acting now!

NEWDOS-80 is $149.00. If you already own NEWDOS+, and
can prove it, you can upgrade for only $65.00.

We suggest you order by phone, as the copies we . have
ordered are going fast! Your credit card slip will not be
deposited until your copy is in the mail. Copies shipped
Priority Mail or UPS Blue Label (your choice) on the day we
receive them!

For persons wishing to upgrade, the fastest method is
to ship us your original NEWDOS+ diskette.

Yes, even the best can be improved. NEWDOS-80, the
super improved version of NEWDOS+, is available from THE
ALTERNATE SOURCE, 1806 Ada Street, Lansing, MI 48910, or by
phoning 517/487-3358. Hurry--be the first person in your
users group to own one!

2/24

Patchwork (orange?)

by Chuck

O0ld timers to the Alternate Source (i.e. from last
issue) will remember the problems we had with the Flectric
Pencil. Kept jumping back to Basic and all. We had a
similiar problem with Allan Moluf's DVR program. Whenever
the <BREAK> key is depressed and SYS1 overlays are in RAM,
there is an invalid op code (during the test to see if the
<BREAK> key IS depressed) which gives control of the system
to the left-fielder, who scratches his head and finally
throws the ball into the cheap seats (Level II, would you
believe?) OK, I'm semi-sorry. The fault wasn't entirely
with E/P. (Some folks just never say die!-Kos.)

On most R/S diskettes, your SYS1 should be starting on
track 10h (break out the Zapper!). The problem is within
that first sector of SYS1. This is next to impossible to
implement in memory; besides, if you Zap your diskette, you
won't have to worry about it again.

The culpret is located at track 10H, sector 0, byte
DFH. The instruction as it comes is: LD HL, (430FH)

The op code for this is 2A0F43. The instruction we
actually want is: LD HL,430FH

The op code for this instruction is 210F43, Simply
replace the byte at DFH, 2A, with 21. The effect of this
instruction is to determine if interrupts are on or off as
@ machine language program is executed. Depending on
whether the program has a DI (disable interrupts) or not,
your program can find very interresting places to
wonder--usually to ENTER MEMORY SIZE.

My sincere thanks to both Allan Moluf and Jim Mullin
for pointing out this particuliar fix--I understand it is
incorporated into NEWDOS and is documentated along with
this should you be interested in more information.

<END>

(Note from Joni: Since 'TRS-80 Disk and Other Mysteries' I
believe Superzaps and %Z80zaps h ae gotten more workout than
all combined in the last two years! We would give special
priority to other information which help to make the
TRS-80 the reliable machine it can be. If you have any
suggestions, please pass them along. Reminder: all of our
authors are compensated, at least minimally!

2/25

The Alternate Survey

1. The vast number of TRS-80's in the market place are
resulting in a large number of software packages being made
available--too many to review in one issue, and still
maintain a balanced content. Would you object to possibly
one issue per year being devoted to 'catching up' on
various products available?

2. Would you like to see 'comparison studies' of similar
products, for example, utilities, monitors, various
business packages? Would you have any specific suggestions
for reviews?

3. Is price a major concern when you purchase software?

4. Were ycu disappointed with the print quality of this
issue?

5. Have you written a program that you would be interested
in marketing?

As always, we appreciate your opinions in directing
the future goals of TAS. One way to make this easier (for
both of us) is via the ‘'psuedo survey' format. Like
before, we will award a $10.00 software certificate to the
three lucky persons who are blessed by the fickle finger of
fate (actually, it's Peggy, Joni's sister). Winners from
the last issue will be announced next issue.

Regarding question 4, a special apology to Mr. Rohr
and Jim Mullin. They both commented favorably on the bold
type font.

Mail your viewpoints to TAS Survey #2, 1806 Ada
Street, Lansing, MI 48910. Winners will be announced Issue
#4.

‘k:‘. hkhkkkhkhkkhkhkkkk
The Disassembled Handbook for the TRS-80

This is the book that does what the others don't!
Learn how to set up and use TRS-80 ROM routines! Complete
examples (in source code!) included! This book will teach
you more about the 'inner workings' of the TRS-80 than any
other on the market! The most informative and accurate
source of information currently available!!

Just to give you an idea of what the book is like,
type in and RUN this small program:

20 CLS:?"FUNCT=ADDRESS LSB-MSB FUNCTION=
ADDRESS LSB-MSB"

25 A=6176:FORX=5712T06175:Y=PEEK(X):IFY>127THENY=Y—128

30 Z=X+1:IFPEEK(Z)>127THEN?CHR$ (Y) ;" = " ; ELSEGOTO45

35 A=A+2:IFA=6352THENA=5640

40 ?A,PEEK(A);"-";PEBK(A+1),:GOTOSO
45 ?CHR$(Y);

50 NEXT

55 END

2/26

Disabling the BREAK Key
by Allan Moluf

This subject came to light when Ken Edwards told me of
his research with the BASIC statement: poke 163%6,r where
he had tried the different values of N from 0 to 255 and
recorded the effects of pPressing the BREAK key for each
different number. He said a note in the Chicago TRS-£0
Users' Group newsletter (CHICATRUG) had said that the break
key could be disabled by POKEing a certain value there.
#lthough he did nct know why it worked, scme nurbers did
disable the BREAK key, some had no effect and others caused
strange effects such as jumping back to +the MENOEY SIZL?
question. This article will explain how it works.

First of all, the TRS-80 ROMs have a subroutine which
scans the keyboard to see if any keys are depresssed.
(This subroutine is located at 03E3H-0457H; it does the
work when 002BH is called to get a keyboard character.) It
returns zero if no character has been pressed or else
returne the 2ASCII value for the character. It also makes a
special check for the BREAK key an¢ calls 0028F if the
BREAK key is detected; at 0028H is a jump to 400CH (which
is 16396 in decimal).

0028 cC30c40 JMP 400CH ;This is RESTART 28H
002B 111540 LD DE,4015H ;4015H = keyboard DCB
002E 18E3 JR 0013H :To device I/0 routine
0453 FEO1 Ccp 01H ;1 is the BREAK key
0455 co RET N2 ;Return if not BREAK
0456 EF RST 28H ;CALL 0028H for BREAF.
0457 C9 RET ;And then return

In Level II BASIC (but not Disk BASIC), we have the
following instructions starting at 400CH:

400C C9 RET ;This is address 1639¢
400D 00 NOP

400E 00 NOP

400F C9 RET ;For RESTART 30H

4010 00 NOP

4011 00 NOP

Now if you change the instruction at 400CH to one
which makes A zero, such as XOR A (which has the opcode
0AFH) , the routine which looked for a keyboard character
will get zero (meaning no key) instead of 1 (meaning the
BREAK key). For example, you could POKE 16396,175 which
puts 175 (or OAFH) into 16396 (or 400CH) , giving us:

400C AF XOR A ;Sets A to zero
400D 00 NOP
400E 00 NOP
400F C9 RET

2/27

Now when the BREAK key is pressed and the keyboard
scan routine calls 0028H, it jumps to 400CH and puts zero
in A, does nothing twice and then returns. The net effect
is to return saying no key was pressed.

If the BASIC function INKEY$ is used to get a single
character, it would return with an empty string (zero
characters) instead of a single character with ASCII value
of 1.

Another instruction such as INC A would cause the
BREAK key code of 1 to be changed to a code of 2. The
BREAK key would still be disabled but INKEY$ would now
return with a single character whose ASCII value is 2.

All of these instructions work because the RET at
200FH gets executed after the instruction in 400CH and the
KOPs in the the next two bytes. If the instruction POKEd
into 400CH is some kind of jump, the TRS-80 will Jjump to
the address in 400DH-400EH. Since this is zero, we go back
to the MEMORY SIZE? gquestion.

All well and good until we get to Disk BASIC. Now we
have the following instructions starting at 400CH:

400C C3A24B Jp 4BAZH ;For RST 28H in DOS
400F C3B444 JP 44B4H ;For RST 30H in DOS

Here 400CH is used for both the BREAK key detected by
the keyboard subroutine and for DOS to load its overlays
for things like OPENing and CLOSEing files. Now POKEing
around in 400CH is going to cause trouble. The routine at
4BAZH determines which of the two cases it was (overlay
requests always have A > 127 whereas the BREAK key calls
always have A = 1).

;~~- DOS I/O vector area -—-
4312 C34D5D JP 5D4DH ;For BREAK in KBD scan
4315 00 NOP ;For BREAK to DEBUG
4316 00 NOP
4317 00 NOP
;--- DOS processing area =—--
4BA2 E3 EX (sp) ,HL ;BREAK, DOS overlays
4BA3 E1 POP HL
4BA4 B7 OR A ;See if not overlay
4BAS T21243 JP P,4312H ;If bit 7 is zero
‘ ;--- Disk BASIC -=-
5D4D FEO1 Cp 1 ;See if BREAK key
5D4F C8 RET 2 ;Return if so
5D50 C34BA0 Jp 4BAOH ;Else go return a zero

Thus when you hold down the BREAK key and the keyboard
is scanred, the RST 28H is performed which Jjumps to 400CH
and from thence to 4BA2H which diddles around and

2/28

determines that bit 7 is not set (so it was a BREAK key
restart) and then proceeds to jump to 4312 which normally
jumps to BASIC at location 5D4DH. We can prevent Disk
BASIC from detecting the BREAK key by the following:

POKE &H4312,&HAF: POKE &H4313,sHCO

Those commands will zero A and return, simply disabling the
BREAK key for Disk BASIC with no side effects.

An alternate way is to change the data byte at 5D4EH.
We could change it to anything other than one so the BREAK
key would be turned into no key. The Chicago area
newsletter gives an address of 23461 for disabling the
BREAK key for NEWDOS. This is hex 5BASH, corresponding to
5D4EH in the above listing. The advantage of wusing
4312-4313H iS that it will work with either TRS-DOS or
NEWDOS .

The next locations 4315H-4317H are also useful. When
you do a CMD"D" to get into DEBUG from Disk EASIC and then
go back to BASIC with a G command, pressing the BREAK key
always gets you to DEBUG. This is because DEBUG places a
jump tc DEBUG in 4315H-4317H and when the real-time clock
interrupts (40 times per second) , it checks to see if the
BREAK key is depressed and 4315H is ncn-zero. You can get
back to normal use of the BRFAK key after by either

CMD®T"
which turns off interrupts cr by:
POKE &H4315,0

which makes DOS think DEBUG is not wanted anymore.
**:lt LI TR TTETS]

ERRATA -- Issue #1
Mzke the following changes to the "HANGMAN" program.. .

Line 5, change GOSUB34 +to GOSUB33. Line 7, change
GOTO32 to GOTO31, Line 17, change GOSUB33 to GOSUB32.
Line 18, delete RETURN, Delete the first 1line 26. Add
SET(66,15) :RETURN to the end of line 25. Line 31, change
GOSUB34 to COSUB33. Line 4, delete PRINT'0,CHR$(32):.
Line 5, after GOSUB33, insert PRINT'64 ,CHR$(30) :.

Re: EMBED MACHINE LANGUAGE IN BASIC. To set wup the
USR(0) functions, you must POKE 16526 with PEEK(X+1) and
POKE 16527 with PEEK(X+2)., It should also have been noted
that when using a string array, you cannot POKE in either a
CHR$(0) or a CHR$(34).

2/29

FROM THE SOURCE'S MOUTH
By Joni M. Kosloski

I think there are some assumptions and/or pretensions
being propagated, especially by programmers and software
houses , which only serve to weaken the software industry.
If you even have a fantasy of writing a 'best seller'
(program) just as soon as you get your machine mastered,
give this some thought now.

I'm talking about software protection. I recently did
some systems work for a local company. As I was explaining
various aspects of computing to this very specialized f£firm,
the subject of software protection came up. I got into an
interesting debate with an attorney who believes that
software is protected. He has yet to show me proof. Nor
have I seen it in any of our favorite publications.

Creative Computing seems to be a leader in uncovering
supposed copyright violations, yet they haven't given
adequate documentation to the rules, rights and regulations
to back up their stance.

At a recent users group meeting, I stirred wup this
hive of bees (at least one lawyer was present). Several
comments were batted back and forth, from "You're buying
the right to use it on one system", to "You can make and
give away all the copies you want, as long as you don't
sell them". Unfortunately (or is that fortunately?), the
meeting was about to close, so debate was curtailed. I
have a feeling the latter comment is closer to the truth.
Prove me wrong.

TAS is concerned with getting a lot of good software
into the hands of many people...at reasonable prices. By
the same token, we're concerned for the programmer who puts
many hours into developing a good program. How's he gonna
feed his kids?

I have seen both ends of the spectrum; persons who
distribute fast and freely with no discrimination, to
persons who wouldn't give away a bit! (Pun intended?!? I
currently walk a fine line. I can't afford all the
software I want (not that I'd ever use it all), yet I don't
believe in uniimited exchange. My feelings toward co-op
purchases, especially for major packages, are more positive
than negative. How about trades for equal value? If you
didn't swap comic books when you were a kid, you missed an
important indoctrination into the capitalistic way!

The only difference between men and boys is the price
of the toys.

2/30

TRS-80 RAM Locations
by Allan Moluf

This is a summary of the BASIC and DOS uses some of the RAM
memory locations used by Level II BASIC, Disk BASIC and DOS
itself. Locations whose use is not well wunderstood are
marked by "???". Locations by either BASIC are noted as
"BASIC -~ " and the locations used by Radio Shack's TRS-DOS
are noted by "DOS - ", (NEWDOS generally wuses the same
locations.)

This is only a brief index to some very interesting ideas.
A proper listing of the purpose and usage of each location
would require much more time than I have available, and
undoubtedly cause this material to not see print for many
more months. May it be of some use as it stands.

Some other sources of information do exist. I can
especially recommend Bob Richardson's "Dis ssembled
Handbook for the TRS-80" for its explanation of the
numerical subroutines and Roger Fuller's "TRS-80 Supermap"
for its detailed commentary on the entire Level II ROM.
Also, the article by Wes Thielke in the February 1980 issue
of "80 Microcomputing" gives a very readable discussion of
some of the useful ROM subroutines.

This is the first revision of this material, which was
originally published in +the CMTUG newsletter, for the
TRS-80 users in the Lansing Michigan area. I welcome
corrections or any further information which may be
included in later revisions and elaborations of this
wonderful world of the TRS-80.

00010 ; RSTnn is jumped to by ROM after 'RST nn'

00020 RSTO8 EQU 4000H :BASIC - CHECK CHAR, SKIP SPACES
00030 RST10 EQU 4003H ;BASIC - SKIP SPACES

00040 RST18 EQU 4006H ; COMPARE HL ~ DE

00050 RST20 EQU 4009H ;BASIC - GET TYPE OF TOP OPERAND
00060 RST28 EQU 400CH :DOS - BREAK/OVERLAY REQUESTS

00070 RST30 EQU 400FH ;DOS - BREAKPOINT FOR DEBUG

00080 RST38 EQU 4012H ;DOS - INTERRUPT SERVICE ROUTINE
00090 KBDCB EQU 4015H ; KEYBOARD DCB

00100 VDDCB EQU 401DH ;VIDEO DISPLAY DCB

00110 LPDCB EQU 4025H ;LINL PRINTER DCB

00120 DOSJIMP EQU 402DH ; RETURN TO DOS

00130 DOSEN2 EQU 4030H ; RETURN TO DOS COMMAND LEVEL

00140 DEVECT EQU 4033H ;DOS - DEVICE VECTORING ROUTINE
00150 KEYMEM EQU 4036H ; KEYBOARD KEY MEMORY (7 BYTES)
00160 PORTFF EQU 403DH ; CURRENT PORT FF OUTPUT BITS

00170 ; Bit 3 selects 32 BIG chars per line
00180 ; Bit 2 turns on the cassette tape
00190 ; Bits 0 or 1 are set for positive and
00200 ; negative pulses to the cassette.
00210 ; These values take effect when OUTput
00220 ; to I/0 port OFFH.

2/31

00230
00240
00250
00260
00270
0028¢C
0029¢C
00300
00310
00320
00330
00340
00350
003€C
00370
00380
06390
00400
00410
00420
00430
00440
00450
00460
00470
004¢gQ
60490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770

’

TIME
DOSEND
MEMTOP
INTBIT
INTMSK
BRKEP

’
DSKWT
DISP

7
USRADR

’
INPRTN
OUTRTN
KEYCHR
ERRCOD
PRTPOS
DEVTIYP

!
STRBEG

i

PGMBEG
CURPOS
IBUFAD

7
RNDVAL

’

’
ACCTYP

i
STREND
NEXTOP
OPSTK

NSTLEN
NSTADD
STRPTR
TOKADD

i
PROGEP
AUTOF

CURLIN
AUTINC
TOKPTR
STKPTR

i
EDITNO
i
LASTLN
i
VARBEG
ARRBEG

FREBEG
DATPTR

EQU

EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU

403E~403F ?2?

4040H ;TIME: 25MS SEC MIN HR YR MON DAY

4047H ;DOS - END OF DOS RAM

4049H ; DEFAULT TOP OF MEMORY

404BH ;DOS - COPY OF INTERRUPT REGISTER

404CH ; INTERRUPT MASK

404DH ;[0S - ADDR OF BREAK ENTRY POINT

404F-4058 2272

4059H ;DOS - ADDR OF WAIT FOR DISK RTN

405BH ;DOS - ADDR OF TASK DISPATCHER

405D-408D ?2?2?

408EH ;BASIC -~ USR ROUTINE ENTRY ADDR

4090-4092 ?22?

4093H ;BASIC - START OF INP SUBROUTINE

4096H ;BASIC - START OF OUT SUBROUTINE

4099H ;BASIC - INKEY$ CHAR STORAGE

409AH ;BASIC - ERROR CODE STORAGE

409BH sBASIC - PRINTER HORIZ POSITION

409CH ;BASIC - I/O DEVICF 7TYPE

409D-409F ?227?

40A0H ;BASIC - START OF STRING SPACE

40A2-40A3 ?2?2?

40A4H ;BASIC ~ START OF BASIC PROGRAM

40A6H sBASIC - CURSOR HORIZ POSITION

40ATH ;BASIC - INPUT BUFFER ADDRESS

4029H 2?22

40AAH ;BASIC - RANDOM VALUE (3 BYTES)
used as seed for next random number
middle byte changed by RANDOM

40AD-40AE ?27?

4 0AFH ;BASIC - TYPE OF NUMBER IN ACCUMULATOR

40B0 2?72

40B1H ;BASIC - END OF STRING SPACE

40B3H ;BASIC - STRING OPERAND POINTER

40B5H ;BASIC - STRING OPERAND STACK

40D3H ;sBASIC - NEW STRING LENGTH

40D4H sBASIC - NEW STRING ADDRESS

40D6H ;BASIC - NEXT STRING POINTER

40D8H ;BASIC - NEXT TOKEN ADDRESS

40D2-40DE ?2?2?

40DFH ;BASIC - 'SYSTEM' - PROGRAM ENTRY

40E1H ;BASIC - AUTO NUMBERING FLAG

40E2H ;:BASIC - CURRENT LINE NUMBER

40E4H ;BASIC - AUTO NUMBERING INCREMENT

40E6H ;BASIC - TOKEN POINTER

40E8H ;BASIC - POINTER TO STACK POINTER

40EA-40EB 2?2

40ECH ;BASIC - EDIT LINE NUMBER

40EE-40F4 ?2?7?

40F5H ;sBASIC - LAST LINE NUMBER EXECUTED

40F7-40F¢ ?2?2?

40F9H ;BASIC - START OF VARIABLES

4 0FBH ;BASIC - START OF ARRAYS

40FDH ;BASIC - START OF FREE MEMORY

40FFH :DOS - NEXT 'DATA' POINTER

2/32

00780 DEFTYP EQU 4101H ;BASIC - DEFAULT TYPES FOR A - 2
00790 TRONF EQU 411BH ;BASIC -~ TRACE ON FLAG
00800 ACCUM FEQU 411DH ;BASIC - 8 BYTES FOR PSEUDO-ACCUMULATOR

00810 ; first 4 bytes are only used for double
00820 ; precision values; next two bytes are
00830 ; the interger value or the least two
00840 ; bytes of a single precision number.
00850 ; 4125-4126 ?2?7?

00860 ACCUM2 EQU 4127H ;BASIC ~ 8 BYTES FOR EXPRESSION VALUE
00870 ; First two bytes are for an integer, cr
00880 ; the first 4 bytes are for a single
00890 ; number or all 8 for a double precision.
009¢C ; 412F-4£151 2?27

00910 ; 4152H ;BASIC - "cvi"

00920 ; 4155H ;BASIC - "FN"

00930 ; 4158H ;BASIC - "Cvs"

00940 ; 415BH ;BASIC - "DEF"

00950 ; 415EH ;BASIC - "CvD"

00960 ; 4161H ;BASIC - "EOF"

00970 ; 4164H ;BASIC - "LOC"

00980 ; 4167H ;BASIC -~ "LOF"

00990 ; 4162H ;BASIC - "MKIS$"

01000 ; 416DH ;BASIC ~ "MKS$"

01010 ; 4170H ;BASIC - "MKD$"

01020 ; 4173H ;BASIC - "CMD$"

01030 ; 4176H ;BASIC - "TIMES"

01040 ; 4179H ;BASIC - "OPEN"

01050 ; 417CH ;BASIC ~ "FIELD"

01060 ; 417FH ;BASIC - "GET"

01070 ; 4182H ;BASIC -~ "PUT"

01080 ; 4185H ;BASIC - "CLOSE"

01090 ; 4188H ;BASIC -~ "LOAD"

01100 ; 418BH ;BASIC - "MERGE"

01110 ; 418EH ;BASIC -~ "NAME"

01120 ; 41911 ;BASIC - "KILL"

01130 ; 4194H ;BASIC - "&"

01140 ; 419710 ;BASIC - "LSET"

01150 ; 419aH ;BASIC - "RSET"

01160 ; 419DH ;BASIC - "INSTR"

01170 ; 41A0H ;BASIC ~ "SAVE"

01180 ; 41A3H ;BASIC -~ "LINE"

01190 ; 41A6H ;BASIC - Disk BASIC error messages
01200 ; 4 1AS9H ;BASIC ~ "USRn"

01210 ; 41ACH ;BASIC - Disk BASIC re-entry

6122C ; 41AFH ;BASIC -

01230 ; 41B2H ;BASIC -

01240 ; 4 1B5H ;BASIC -

01250 ; 41B8H ;BASIC -~

01260 ; 4 1BBH ;BASIC -

01270 ; 41BEH ;BASIC -

01280 ; 41C1H ;BASIC -

01290 ; 41C4H ;BASIC ~ Scan keyboard extension
01300 ; 41C7H ;BASIC - "RUN" extension

01310 ; 41CAH ;BASIC - "PRINT" extensicn

01320 ; 41CDH ;BASIC - "PRINT" extensicn #2

2/33

01330 ; 41DOH ;BASIC -~ "PRINT" extension #3
01340 ; 41D3H ;BASIC - "PRINT" extension #4
01350 ; 41D6H ;BASIC -~ "INPUT" extension =
01365 ; 41D9E ;BASIC - =
01370 ; 4 1DCH ;sBASIC -~ "READ" extension =
01360 ; 4 1DFH ;BASIC - .
01390 ; 41E2H ;BASIC -~ "SYSTEM" extension

01400 DOSSTK EQU 41E5H ;DOS - STACK ARLCA

01410 ; 41E8 is the start of the BASIC input kuffer
G14.0 ; for Level II BASIC.

01430 DIRREC EQU 4200H ;DOS - DIRECTORY SECTOR BUFFER
01440 ; 4288 is the stack pointer for SYSTEM.
01450 CURTRK EQU 4300H ;DOS - CURRENT TRACK ON 4 DRIVES
01460 DIRTRK EQU 4304H ;DOS - DIRECTORY TRACK ON DRIVES
01470 CURDRV EQU 4308H ;DOS - CURRENT DRIVE #

01480 DRVBIT EQU 4309H ; DOS - CURRENT DRIVE SELECT BIT
01490 DCB&DL EQU 430AH ;DOS -~ DCB ADDRESS FOR ERRORS
01500 RETADD EQU 430CH ;DOS - RETURN ADDR FOR ERRORS
01510 DOSFCN ECU 430EH ;DOS - LAST DOS OVERLAY FUNCTION
01520 DBGFLG EQU 430FH ;DOS ~ FLAG FOR DEBUG ON/OFF

01530 ; 4310-4311 ?2?2?

01540 BRKVEC EQU 4312H ;DOS -~ BREAK KEY VECTOR

01550 DBGVEC EQU 4315H ;DOS - DEBUG VECTOK

01560 CMDBUF EQU 4318H ;DOS - 64-BYTE COMMAND BUFFLR
01570 ; 4358-43FF ?2??

01580 RSTDOS EQU 4400H ;DOS - RESTART DOS COMMAND LEVEL
01590 DOSCMD EQU 4405H ;DOS -~ EXECUTE DOS COMMAND

01600 DSPERR EQU 4409H ;DOS ~ DISPLAY ERROR MESSAGE

01610 BEGDBG EQU 440CH ;DOS - BEGIN DEBUG (LIKE CMD"D")
01620 ADDTSK EQU 4410H ;DOS -~ ADD REAL-TIME TASK N

01630 DELTSK FEQU 4413H ;DOS -~ DELETE TASK N FROM LIST
01640 CHGTSK EQU 4416H ;DOS - CHANGE CURRENT TASK ADDRLSS
01650 ENDTSK EQU 4419H ;DOS -~ DELETE CURRENT TASK

01660 PARCMD EQU 441CH ;DOS - PARSE DOS COMMAND

01670 FINIT EQU 44201 ;FILESYS - OPEN OLD OR NEW FILE
01680 FOPEN EQU 4424H ;FILESYS - OPEN OLD FILE

01690 FCLOSE ELQU 4426H ;FILESYS - CLOSE AND SAVE FILE
01700 FKILL EQU 442CH ;FILESYS - CLOSE AND KILL FILE
01710 FLOAD EQU 4430H ;FILESYS =~ LOAD PROGRAM FILE

01720 FEXEC EQU 4433H ;FILESYS - EXECUTE PROGRAM FILE
01730 FREAD EQU 4436H ;FILESYS - READ RECORD FROM FILE
01740 FWRITE EQU 4439H ;FILESYS - WRITE RECORD TO FILE
01750 FVERF EQU 443CH ;FILESYS - WRITE AND VERIFY

1760 FRCW EQU 443FH ;FILESYS - MOVE TO RECORD 0

01770 FPOSN EQU 4442H ;FILESYS - CHANGE FILE POSITION
01780 FBACK EQU 4445H ;FILESYS - MOVE BACK 1 RECORD
01790 FSKIPF EQU 4448H ;FILESYS -~ MOVE TO END OF T'ILE
01800 ; 444B-4466 ?2?2?

01810 DSPMSG EQU 4467H ;DOS - WRITE MESSAGE TO DISPLAY
01820 PRTMSG EQU 446AH ;DOS -~ WRITE MESSAGE TO PRINTER
01830 GETIME EQU 446DH ;DOS - GET FORMATTED TIME

01840 GEDATE EQU 4470H ;DOS - GET FORMATTED DATE

01850 ; 4473H ;DOS -~ OVERLAY SYS1 - 5

01860 ; 4476H ;DOS - OVERLAY SYS1 - 6 ~ PARSE
01870 ; 4479-44AF ?227?

G1880 ; 44B0-44B3 FROM 4409

01890 ; 44B4-44B7 FROM 440D

01900 ; 44B8-44CE FROLK 4033

2/34

01910 ; 44CF-44DE FROM 4467

0192C ; 44DF-44EE FROM 446A

0193¢C ; 44EF-44FF ?2?2?

01940 TASKO EQU 4500H ;DOS -~ TASK (8/SEC) 0

01950 TASK1 EQU 4502H ;DOS -~ TASK (8/SEC) 1

01960 TASK2 EQU 4504H ;DOS - TASK (8/SEC) 2

01970 TASK3 EQU 4506H ;DOS - TASK (8/SEC) 3

01980 TASK4 EQU 4508H ;DOS - TASK (8/SEC) 4

01990 TASKS EQU 450AH ;DOS - TASK (8/SEC) 5

02000 TASK6 EQU 450CH ;DOS - TASK (8/SEC) 6 - CLOCK
02010 TASK7 EQU 450EH ;DOS - TASK (8/SEC) 7 - TIMER
02020 TASKS EQU 4510H ;DOS - TASK (40/SEC) 8

02030 TASK9 EQU 4512H ;DOS - TASK (40/SEC) 9

02040 TASK10 EQU 4514H ;DOS - TASK (40/SEC) 10

02050 TASK11 EQU 4516H ;DOS - TASK (40/SEC) 11 - TRACE
02060 ;

02070 ; 4518-4CFF DOS RESIDLNT ROUTINES

0208¢ ; IN NEW RELEASES OF DOS SOME OF
02090 ; THESE ADDRESSES ARE LIKELY TO
02100 ; CHANGE, BUT A FEW INTERESTING
02110 ; ROUTINES ARE DESCRIBED HERE:
02120 -;

02130 DSKRD EQU 4 6DDH ;DOS - READ PHYSICAL SECTOK
02140 DSKWR EQU 46E6H ;DOS - WRITE PHYSICAL DATA SECTOR
02150 DSKWRD EQU 46EFH ;DOS - WRITE DIRECTORY SECTOKR
02160 GETDIR EQU 4AC1TH ;DOS -~ READ FILE DIRECTORY ENTRY
02170 MPY24 EQU 4B 6AH ;DOS - MULTIPLY C * HL =-> AHL
02180 DIV1e EQU 4B84H ;DOS - DIVIDE HL / A -> HL, A
02190 ;

02200 ; 4D00-4DFF G.A.T. SECTOR BUFFER

02210 ; 4E00~-51FF DOS OVERLAY AREA

02220 ; SYS1 - DOS command input

02230 ; SYS2 - file opens

02240 ; SYS3 - file closes

02250 ; SYS4 - displays DOS error message:
n2260 SYS5 -~ the DEBUG routine

02270 ; 5200-XXXX IS AVAILABLLI FOR FROGRAMS
02280 ; SYS€ - extended DOS commancds
02290 ; such as 'DIR' and 'KILL'

02300 END

AR KA A A AR I AR KA KR AR AR AR IR R A RA A AR KA A AR R KA IR Ak hk kA A AR kA dh k&

FYI...

The Alternate Source is compiled (or is that
interpreted?) bimonthly by Charley Butler and Joni Kosloski
at 1806 Ada Street, Lansing, MI 48910, along with the help
of many fine folks. We Have not decided on a formal
Masthead because too many changes =re taking place. Shoulc
you desire to communicate with any of the authors, we will
gladly forward mail to them. Should you care to comment,
criticize, evaluate, suggest, contribute or otherwine
extract your two cents worth, we're all ears. All
correspondence should be addressed to the editor at the
above address.

2/35

AVAILABLE SOFTWARE...

QUILL DRIVER--Format your written reports, letters,
documentation, articles, and more! Quill Driver is written
in BASIC, but has embedded machine language routines to
provide the speed you need! Text can be entered as BASIC
REM statements (easy to edit!) or in EDTASM format;
nunerous commands will accommodate ANY type of formatting.
Comes with extensive manual and sample document files, for
just $29.95 complete! Manual alone, $5.00, refundable on
later purchase.

SPOOLER--Don't be I/0 bound! Put SPOOLER to work, and
printing becomes a background activity! Spooler reserves a
4K buffer in memory, routes printed material to buffer
area, and returns control of the machine to you. WORKS FOR
LEVEL II OR DOS!! All versions on one tape, instructions
for making disk file are included. The price? Just
$16.95!

SUPERMAP-~Now that you've spent hours disassembling Level
II ROM and RAM, not to mention a fortune on computer paper,
whaddaya do with it? You need SUPERMAP! SUPERMAP is an
expertly annotated listing of all relevant memory locations
in the Level II RCM and RAM. Hundreds and hundreds of
comments and explanations--an essential tool! A SPECIAL
PRICE, TOO--Just $8.95!

FROM AUTOMATED SIMULATIONS--TwO new programs! Morloc's
Tower and The Datestones of Ryn. Find and slay the vicious
Morloc the Warlock! Recover the valuable datestones stolen
by the notorious bandit! Hours and hours of action--just
$14.95 each!

ISAR--Information Storage And Retrieval! ISAR is THE
low-cost data base management system for micros! Hobby,
Business, Mailing 1lists, Formatted Reports--ISAR handles
them all! Uses random file structures for increased speed!
Easy wuser prompts, clear documentation. Nothing beats
ISAR! Seven modules--Menu, Create a File, Add Records,
Change or Delete Records, Sort A File, Scan or Search File,
LPRINT and Format Reports. Requires DOS. On diskette for
$16.95, cassette for $13.95. Also available separately,
ISAR8, which merges two ISAR files with the same
specifications, and ISAR9 ,which allows you to add a field
or lengthen a present field. On cassette only, $6.00 for
both,

FRESH OFF THE PRESS AND AVAILABLE NOW--THE ALTERNATE SOURCE'S
FIRST SOFTWARE CATALOG!

ASK FOR YOURS TODAY--~NO CHARGE!! (Features special discounts!)

2/36

SOFTWARE (continued)...

DISASSEMBLER 1.2--This program is written in rnachinre
language and will disassemble machine code into ZILOG 2Z-80
mneumonics , with symbolic labels for address and 16 bit
references within the start-to-end disassembly request.
Output can be directed to CRT, PRINTER, or TAPE CASSETTE.
A source tape suitable for loading into the Radio Shack
Editor/Assembler is produced. Specify memory size. FOR
LEVEL II ONLY! TAPE I/0 only. $15.00.

DISASSEMBLER 2.0-~Provides disk I/0! This version is
compatible with the Apparat disk extended EDTASM, too!
Several useful commands in addition to the disk extension.
Will run in 32K or 48K; TRSDOS, NEWDOS or VTOS required.
$20.00.

CASSETTES-~A Baker's Dozen! Thirteen (13) high quality
Agfa tapes--they hang on to your bits like they were gold!
Soft plastic cases included. Just $10.95 plus $1.00
postage. Order double quantity, we pay postage!

DISKETTES--Ten (10) Verbatim top qualiity diskettes, with
sleeves and soft box, are just $26.50! Sorry, but this
price is so low that we've got to ask you to include a
dollar postage. Order double cuantities, we pay postage!

ALSO AVAILABLE--Just $14.95 each: Android Nim, Snake Eggs,
Life Two, and Beewary (all with sound!); Adventures 1 - 8
on cassette; Back-40, Dr. Chips, Space Battle, Super
Invader, and Galactic Empire!

ALSO AVAILABLE--Just $9.95 each: Owl Tree, Great Race,
Scramble, Lying Chimps, Challenge, Concentration (all with
sound!) !

ALSO AVAILABLE-~-Just $3.95 each: Number Base Converter;
Electric Pencil File Conversion; Freakout (a sound
extravaganza!!); Machine Language to Basic Data Statement;
Mail List File to Upper/Lower Conversion!

TO ORDER: Send check or money order to The Alternate
Source, 1806 Ada Street, Lansing, MI 48910. Visa & Master
charge by phone, 517/487-3358. Include 50 cents per
program for first class postage, otherwise shipped fourth.
Don't forget to ask for your FREE catalog, featuring our
entire software selection!

PLAYING GOD WITH LIFE--The familiar game of Life, with an in-
triguing touch! In this version, you get to play GOD--enter
BIRTH mode to give life! Enter DEATH mode to take life! 1In
machine language, too! Order from Dennis Kitsz, Roxbury, VT
zip 05669. (That's a full address!)

2/37

ODDS & ENDS

Considering Telecommunications?

We at The Alternate Source feel that
telecommunications will soon be playing a major role in the
field of microcomputers. So we've been investigating.

Our latest discovery is of a "UNIVERSAL MODEM" package
that will be a combination modem and RS-232. It will plug
right into the back of your Level II 16K keyboard, or your
expansion interface, if you're a disk user. The modem
directly connects to insure greater transmission
reliakility. the best part is the price--it will be less
than the combined price for the similiar R/S configuration.
The RS-232 is also user accessible. Right now there are
only prototype models available and we have one on the way.
Also, information is on the way--it should be here before
the actual model. If you are interested in such a unit,
why not let us know? Are there particular features you
desire on such a unit? Please tell us about themn. We'll
look forward to hearing from you, and you can look forward
to more information in Issue #3!

Monitoring the Media

We recently acquired a copy of "The Best of Personal
Computing". The magazine sells for $7.50 and is jam-packed
with applications for business or home. They all aren't
directly written for the TRS-80, but could be modified with
a minimum of hassle. Copies can be obtained by writing
Personal Computing at 1050 Commonwealth Avenue, Boston, MA
02215.

The March, 1980 edition of Interface Age has an
excellent tutorial on Fortran, using the Microsoft compiler
for the TRS-80.

The first two issues of 80-Microcomputing were
fabulous and terrific! Let's hope they can keep up the
good work!

Would still encourage everyone to purchase a copy of
the current 80 Software Critique. With more and more
packages for the TRS-80 being sold, it's hard to know what
to buy and what to shun!

Fuller Electronics

has a nifty little device that plugs into the back of
your keyboard--fools the computer into thinking there's a
printer attached. LPRINTs won't hang up the system
anymore! Write Fuller Electronics for more info: 7465
Hollister Avenue, Suite 232, Goleta, CA 93017.

2/38

No Time For Entering Programs?

The Alternate Source now offers all programs contained
within a given issue available of cassette or diskette for
those persons desiring. This will benefit those of you who
have little time for keying in programs, and will also
eliminate potential 'BUG' problems. Cassettes can be
ordered for $5.00, diskettes for $7.50. Mail check to TAS,
1806 Ada St., Lansing, MI 48910. Be sure to specify issue

number.
Ahkhirdhdix

Information for ISAR owners...

ISAR was originally designed to provide personal users
with a low cost data management system. When introduced,
however, its reception has been most frequent for small
business applications. In order to fully support the
myriad of applications to which it has been applied,
several changes and improvements have been made. If you
would like to take advantage of these improvements, The
Alternate Source will provide, on diskette, the latest
updates to the ISAR modules for $5.00, if you include your
original diskette with your request. MAil to: ISAR
Update, 1806 Ada Street, Lansing, MI 48910.

Current version numbers for the individual modules

are:
Module 1=1.0 Module 2=1.0 Module 3=1.11
Module 4=1.2 Module 5=1.31 Module 6=1.2
Module 7=0.95 Module 8=1.12 Module 9=1. 1
Module 5b=1,.33

hkhkkhh ki

In the Buffer...

We are going to discontinue this feature for this
reason: No less than three of the articles in this issue
came in with less than a week before press time. If we
become more formatted, we will not be able to accomodate
these late articles, be they exciting or not. In addition,
no less than two people are sending in more data for our
printer review (promo from last issue). If we don't
maintain a certain degree of flexibility (by not obligating
ourselves to fill any given issue with promised articles),
we feel our service to you will not be as unigue. We will
provide clues sometimes, All promised articles will
appear. Thanks.

khhkkkkhkhk

MAY THE SOURCE BE WITH YOU! (Sorry, couldn't resist!)
TRS~80 is a registered trademark of the Tandy Corporation,

- 39 -

AFTERWARD FOR ISSUE 2

Probably the most valuable article in this issue is Allan Moluf’s
RAMSTUFF. We have received several comments on it and plan a more
complete listing -- someday.

Note the first “Public Domain” software by Roxton Baker, who later
penned “"TRAKCESS”.

B-17 from ABS Suppliers is still around and only recently has been
receiving acclaim well deserved.

TWO DOLLARS VOLUME 1, NUMBER 3

THE
ALTERNATE
SOURCE

THE MAGAZINE OF ADVANCED APPLICATIONS
AND SOFTWARE FOR THE TRS-80.

IN THIS ISSUE:

PAGE
HANDS OFF 3
REAL B.S. ... o 6
AN ALTERNATE VIDEO DISPLAY 7
B0-AIDS ... 1
POWER-UP i 14
MYSTERY PROGRAMoo i 20
MICRODOS REVIEW 25
TWODISK ... 3
VARPTR ... 36

Regular Features:

Editorial Rambling — 2, Survey — 22,
Bulletin Board — 28, Source’s Mouth — 35,
Odds & Ends — 43

TRS-80 IS A TRADEMARK OF THE TANDY CORPORATION.

THE ALTERNATE SOURCE Vol. I, No. 3

Editorial RAMbling...

Well, with taxes out of the way and Spring finally showing
it's more pleasant side, I hope this issue of TAS finds you
in good spirits!

Before you get issue #4 (we've got some dynamite
articles for it already!) you should receive a small
communique from Joni and/or myself called 'Between the
Issues®. We're attempted these before with reasonable
success and there are some projects we would like to
develop that are more apropos in that type of communique.
Some of our older subscribers will not be too surprised;
the only distinction is that BTI will become, at least per
our intentions, regular. This will allow us to handle
certain items on a more timely basis, it will help
interface with those who desire a monthly publication until
that reality can be within our grasp and it will allow wus
to interface with you on a more personal level, something
which may or may not be proper within the confines of this
magazine as it is evolving.

We're really proud of some of the articles in this
issue and hope they meet with your satisfaction. Please
allow me to direct your attention to the survey (on the
middle pages). The concept is not entirely new , but I
believe it has a definite place in the development of any
magazine providing compensation and appreciation for both
readers and authors.

As of this date, we have very few commitments from
authors for regular articles. I guess the primary
implications of this for you is that you are guaranteed a
wide variety of articles. We are loocking for good articles
for future issues and welcome your contributions. We pay
for all articles published.

Above all, we welcome your comments, suggestions,
feedback, hisses, boos, rahs and the like. We are truly
amazed at the span of knowledge that exists among users for
the TRS-80. We still seem to have the middle ground
covered by our in-house folk, but branching from that are
the experts and beginners. OQur job now is to try and
interface those two groups! Wish us luck...

April 19, 1980
Charley Butler

The Alternate Source is published bi-monthly by Charley
Butler and Joni Kosloski at 1806 Ada, Lansing MI 48910.
Any letters to any author will be forwarded expediently.
Subscription rates are $9.00 per year. Write for
advertising info.

PAGE 2

THE ALTERNATE SOURCE Vol. I, No. 3

HANDS OFF!
By Dennis Bathory Kitsz

(Dennis is destined to become a classic name amongst the
TRS-80 inner circle. We've had several favorable comments
on his last article, and he has two articles in this issue.
This first article is for the Level II audience who are
frustrated with reserving menmory sizes for their SYSTEM
programs.)

Are you tired of typing starting addresses for SYSTEM
tapes? Or do you tend to forget a start address, and have
to shuffle through your documentatior? Take heart! Your
own SYSTEM programs can be made to execute themselves in
Level II. Once you have the idea, the process is easy.

There are several ways of interrupting the SYSTEM
loading process to jam in your starting routine.
Understanding this process will allow you to effect this
auto-start a number of ways, two of which will be presented
here.

How, then, does the SYSTEM process execute in the
usual fashion? You type SYSTEM, and the machine responds
with the special *? prompt. You then enter the program
name, and the tape is searched for a corresponding name;
the program is loaded into place, a closing address (if
designated by the programmer) is left in the HL register,
and a *? is returned, waiting for you to enter the starting
address.

Question: what is happening when the *? prompt is
waiting for you to enter the starting address? Yes, that's
it. The keyboard is being scanned for a value. What can
be done is simple: PATCH INTO THE KEYBOARD SCAN while the
program 1is being loaded. In Level II, a program can be
loaded in as many discrete blocks of memory as
desired...including, of course, the two bytes employed by
the keyboard scanning routine.

Here's how I did it: the loading program loads itself
as well as two bytes into that keyboard scan routine at
addresses 4016 and 4017 (hex). When the machine returns
the *? prompt, it attempts to scan the keyboard, but
instead is diverted to the entry point of the program you
wish to execute. But there remains one end to tie up...the
first command of your program must REPLACE the original
bytes into 4016 and 4017. If you are wusing Level II
without wutilities (such as a debounce routine), these bytes
will be E3 and 03, representing the jump address of 03E3.
Here is my loader routine, with a few bells and whistles:

ORG 3C00H ;This is the first video
location

3/3

THE ALTERNATE SOURCE vol. I, No. 3

DEFM 'LOADING' ;This writes "LOADING" on
the screen

ORG 4016H ;This is the keyboard scan
routine

DEFB nn ;Define your program's
entry LSB

DEFB nn ;Define your program's
entry MSB

ORG nnnn ;This is where your program
starts

LD HL,4016H ;Get the keyboard scan loca-
tion again

LD (HL) ,0E3H ;Put original scan MSB back
in place

INC HL :Increment address to 4017H

LD (HL) ,03H ;Put original scan MSB back
in place

.

’
;:Your own program goes here
!

’
ORG 3C40H ;This is second line on
video screen
DEFM 'GOOD LOAD' ;This message helps indicate

correct load
END

This system has three advantages: first, it lets you
know for sure that the program has STARTED to load. Often
that's pretty vague, even if the stars do flash., Next, it
lets you know as best it can that the load was IN SYNC.
Incorrect bytes may get by (the "C", or checksum, error) ,
but a lost bit will create true havoc. The message is
reassuring. And finally, the program takes right over,
executing without a pause.

You could also patch into the video driver, which is
likewise used in virtually all applications of the
computer, including the return from SYSTEM load.

Another interesting way of autostart is to patch into
the SYSTEM load at its point of re-entry, which is a CALL
to location 41E2. 1If you recall, I earlier mentioned that
the starting address, if you have provided one in your END
statement, is left in the HL register. Ve could execute at
JP (HL) from location 41E2, as the usual byte found at 41E2
is merely €9, a RETURN command. Using the same method,
then, the program below may be used (in this example, the
LOADING and GOOD LOAD display instructions have been
omitted) :

ORG 41E2H ;This is the system patch
before return

DEFB E9 ;This is the JP(HL) command

ORG nnnn ;Your program starts here

3/4

THE ALTERNATE SOURCE Vol. I, No. 3

LD HL,41E2H iGet the system patch back
LD (HL) ,0C9H ;This restores the original
return

z
;iYour program goes here

.
’

I tend to use the former method (keyboard scan patch)
because it is more "transparent". As one of the most used
functions, it is likely to be examined often by
machine-language enthusiasts. The 41E2 SYSTEM patch may bLe
used by overlapping programs, and should be treated with
more care.

In any case, this convenience of self-loading programs
is not available only to those with disc (or even
stringy-floppy) ; by taking this approach a few steps
further, it is possible even to chain-load a group of
machine language programs.

Thanks are due to Jeffrey Eisen of Huntington Valley,
pPa, for reminding me of patch found at 41E2.
Correspondents may write to me (Roxbury, Vermont 05669) ,
or call me at (802) 485-6112.

VARPTR TIP

Tip on how to find the variable name and variable type
using VARPTR: Since you must already know the variable
name in order to use VARPTR to find the name, there is
probably not too much value in knowing how to do it. It is
nonetheless one of those interesting pieces of information
that may come in handy in a pinch, so here it is. 1If the
variable name is AZ, then

PEEK(VARPTR(AZ)-1) = The first character of the variable
name = 'A'

PEEK(VARPTR(AZ)=-2) = The second character of the variable
name = 'g!

If the variable did not have a second character in
it's name, that byte would be set to an ASCII zero,
CHR$ (0) .

PEEK(VARPTR(AZ)-3) = A one-byte number indicating the
variable's type: 2) Integer,
4) Single Precision, 8) Double
Precision, 3) String.

I'1l leave it to you to figure out where the number codes
come from.

3/5

THE ALTERNATE SOURCE Vol. I, No. 3

(This information is from an actual Meta Technologies
Bulletin released September 10, 1979. For mcre information
on how you can receive their Bulletin Service, see page
19.)

REAL B.S.

SUBJECT: TRS-80, Live Keyboard/Display Control

PROBLEM(S) /ISSUE(S) : A very small, high speed, live
keyboard/display routine featuring real~time character
validation, restricted input field length, flashing "block"
cursor and supporting full special character control
functions is required.

IMPLICATIONS: Real-time character validation will limit
data entry errors and simplify coding of option-selection
procedures. If technology employed is of a level that is
not critical from a competitive standpoint, it may be
released in low-cost software, education, etc.

RECOMMENDED ACTION(S) : Routine meeting these criteria
(with demo program) follows:

Contact Bob Fiorelli

5 GOT0100 (216) 289-6600
6 REM
7 REM **** DATA ENTRY/DISPLAY (C) SEPT. 1979

METATECHNOLOGIES CORPORATION, INC., ****

8 REM Q=CURSOR POSITION, FL=FIELD LENGTH,
ML=MIN. ENTRY LENGTH (OR = ZERO FOR N/A)

9 REM FV$=FIELD VALUE, VC$=VALID CHARACTERS,
CC$=CONTROL CHARACTERS (RETURNS IC <> ZERO)

10 S$=FV$:LS=LEN(S$)

20 PRINT@Q,STRING$(FL,136) ; :PRINT@Q,S$;

30 PRINTCA4$; :K$=INKEY$:PRINTC5%$; : IFK$=""GOTO30
ELSEIC=ASC(K$)

40 IFINSTR(VC$,K$)=0GOTO050 ELSEIFLS<FLTHENS $=S$+K$:
PRINTK$; :LS=LS+1:GOTO30 ELSE30

50 IFIC=8ANDLS>0THENLS=LS~1:S$=LEFT$(S$,LS) :GOT020

60 IFIC=13AND(LS>=MLORML=0) THENFV$=5§:IC=0 :RUTURN

70 IFIC=24THENLS=0:S$="":GOTO20

80 IFIC=9GOTO0O10

90 IC=INSTR(CC$,K$) : IFICRETURNELSE 30 NOTE:

100 CLS:Q=540 § = CHR$(91)
110 VC$="0123456789.+=" :FL=10 :ML=3 L = curs (10
120 CC$=CHRS$ (91) +CHRS (10) +CHRS$ (27) +CHR$ (26) = (10)
:30 C4$=CHR$ (14) :C5$=CHRS$ (15) shift ¥ = CHR$(27)
40 GOSUB10 .

150 PRINT@715,“FV$=";FV$,"IC=";IC Shlfté = CHR$ (26)

160 INPUT"HIT ENTER";A$:GOTO140

3/6

THE ALTERNATE SOURCE Vol. I, No. 3

STORING VIDEO DISPLAY FRAMES IN MEMORY FOR LATER RECALL

By Robert M, Richardson

SYNOPSIS

Here is an interesting exercise that will allow the
user to store 5 complete video display frames in MEM or
later recall. Storage is called by pressing '456°'. The
115 byte assembly language program and MEM storage only
require 5235 bytes total, so it will operate easily with
any 16K MEM system. It operates equally well with non-disk
Level II, DOS 2.1, DOS 2.2, DOS 2.3, and NEWDOS+. The
program may be entered in about 5 minutes using an
Editor/Assembler.

INTRODUCTION

There are many occasions when TRS-80 programmers would
like to store data from the video display to RAM memory for
later recall and review, thus allowing selective 'JKL'
LPRINT of that data desired for permanent hard copy record.
Other applications include duplex telephone line MODEM
operations where incoming data may be selectively stored in
MEM for leisurely recall, as well as Morse code and/or
radio teletype systems, et al.

This program is self-executing when loaded with DOS ;
i.e., it will operate in DOS or disk Basic with no further
SYSTEM and /27000 commands. With non-disk Level 1II it is
loaded using standard cassette procedures.,

PROGRAM LOGIC AND FLOW

Since the 'JKL' keys, when pressed simultaneously, are
the NEWDOS+ clue to LPRINT the video display, we will use
the '123' keyboard keys to tell our assembly language
program when to store a complete video display frame, and
the keyboard '456°' keys to tell our program when to recall
a frame. Following Dave Lien's advice to "KISS" (Keep It
Simple, Stupid), we will limit this demonstration program
to storing 5 video display frames; i.e., 1024 X 5 = 5120
bytes. Further simplification includes:

1. Automatic sequencing of the stored video
display frames.

2. If a 6th video frame is stored, it will
"wipe-out" the previous #1 frame. If a 7th
frame is stored, #2. Etc.

3. Recall also includes automatic sequencing.

3/7

THE ALTERNATE SOURCE vol. I, No. 3

4. The number of the stored frame is displayed
in the lower right hand corner of the video
display.

An assembled version of the source code for the
program follows this article. This demonstration program
is located at 27000 decimal so that it will work with any
Level II 16K MEM system, whether non-disk or otherwise. It
may be relocated in MEM anywhere you wish by changing lines
120, 130, 150, 160, and 170 appropriately.

Let's run through the program briefly, even though the
comments are largely self-explanatory. The label COUNT is
the 1 byte MEM location where the number of frames stored,
1 to 5, 1is stashed. The label PLACE is the 2 byte MEM
location containing the address in MEM where each 1024 byte
video display frame is stored. Lines 170-190 are a
straightforward way of poking the START address into the
video display control block's driver address at 401EH and
401FH, thus making the program self-executing when loadecd
via DOS. Lines 220 & 230 switch alternate 280 register
pairs so as not to foul-up any machinations that may be
going on in either your BASIC or assembly language program
that may be running. Remember, the alternate register
pairs AF', BC', DE', and HL' are never used by LEVEL II
ROM. Additionally , the EX and EXX opcodes take 4+ bytes
less MEM than PUSH and POP opcodes. Lines 230-250 are
optional and serve only to remind the wuser "how many
frames" have been stored or ‘“"which frame" is being
recalled. Lines 260-300 are the real ‘work horses' of the
program, in that they simply test the keyboard's number row
to see if either '123' or '456' keys are pressed. Lines
310-330 restore the original register pairs and then jumps
back to the normal video display routine at 04581H. The
entire subroutine, so far, requires only about 24
microseconds, so be assured it will not disrupt most any
program you are running.

STORE moves the 1024 byte video display to PLACE
whenever it is called, resets COUNT to 1 if 5 frames have
been stored, updates COUNT by +1, and then returns to lines
310-330 for a normal exit back to your program.

RECALL is virtually identical to STORE except that now
we will reverse the procedure and move the stored 1024
bytes from PLACE to the video display before returning to
exit lines 310-330. RESET simply reinitializes COUNT to +1
and PLACE to 27200 decimal, which is where we started. If
you have enough memory to store 10 to 20 video display
frames, it is very easy to modify the program to do so.
All that is necessary is to change lines 390 and 540 to:
"Cp 20" (for storing 20 video display frames). If you
chose to leave the frame number display, lines 230-250, 1in
the program it would display:
frame 10 = :, 11 =3, 12 =<, 13 ="'=*, 14 =>, 15 =2, 16

3/8

THE ALTERNATE SOURCE

PROGRAM SUMMARY

the

straightforward

user

the predecessor to the
Video
independent video displays with
storage, and
deeper,
"TRS-80
Alternate Source o

1065,

This is really a teachin

TRS-80 Disassembled

Display", which allows

recall. For

PROGRAM LISTING

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390

individual
of you who wish to dig
of Volume 1II
@ $15.00
Engineering Ltd.,

those
we suggest you order a copy
Disassembled Handbook"
r from Richcraft
Chautauqua Lake, NY, 14722.

Vol. I, No. 3

17 = A, 18 = B, 19 = C, 20 = D, unless modified.

g program from Volume II of
Handbook. Its
and its primary purpose is to
to moving video display data around as desired.
following Chapter,

logic is
accustom the
It is
"Split Screen
totally
scrolling,

user two

of the
from either The
Drawer

:STORING VIDEO IN RAM DEMONSTRATION PROGRAM - SV8

ORG 6978H
COLNT EQU 6978H
DEFB 1
PLACE FQU 6979H
DEFW 27200
START EQU 27003
ORG 401EH
DEFW START
ORG START
EX AF ,AF’
EXX
LD A, (COUNT)
ADD A,48
LD (16382) ,a
LD A, (14352)
cp 14
JR % ,STORE
CP 112
JR Z ,RECALL
ELFIN EX AF ,AF'
EXX
JP 0458H
STORE LD HL, 15360
LD DE, (PLACE)
LD BC, 1024
LDIR
LD A, (COUNT)
cp 5

3/9

:=27000 DECIMAL

i PROGRAM SAVES SPACE HERE
;INITIALIZE BYTE AT +1
;PROGPAM SAVFS SPACFE HERF
iBEGIN STORAGE 27200 MEM
7 PROGRAM WILL CAREFULLY-
iPOKE 27003 AT 401EH AND-
7401FH VIDEO DISPLAY -

7 CONTROJ. BLOCK.

;EXCHANGE ALT. REGISTERS
;EXCHANGE BC,DE,HL REGS
iNO. OF FRAMES STORED

i CHANGE TO ASCII NUMBER

7 DISPLAY LOWER RT. CORNER
;KYBD 01234567 NOS. ROW
:SUB 14 = '123' PRESSED
iGOTO 'STORE' IF ZERO
iSUB 112 = '456' PRESSED
:{GOTO 'RECALL' IF ZERO
RESTORE AF REGISTER
;RESTORE BC, DE, HL REGS
:GOTO NORMAL VIDEO
iBEGINNING VIDEO MEMORY
;LAST HI MEM STORE

iBYTES VIDEO TO MOVE
:GOTO IT!

iNO. OF FRAMES STORED
iSUBTRACT 5

THE ALTERNATE SOURCE

00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00630

We now have in stock Volume

RECALL

RESET

Z ,RESET
HL, (PLACE)
DE, 1024
HL,DE
(PLACE) ,HL
A, (COUNT)

A
(COUNT) ,A
ELFIN

HL, (PLACE)
DE, 15360
BC, 1024

A, (COUNT)
5

% ,RESET

A, (COUNT)
A
(COUNT) ,A
HL, (PLACE)
DE, 1024
HL,DE
(PLACE) ,HL
ELFIN

A,1
(COUNT) ,A
HL,27200
(PLACE) ,HL
ELFIN
COUNT

vol. I, No. 3

; GOTO RESET IF ZERO
;LAST HI MEM STORE

;KO. OF BYTES MOVED

;ADD THEM UP

; UPDATE STORE LOCATION
;NO. OF FRAMES STORLD
;ADD +1

; UPDATE FRAMES STORED
;GOTO THE END

;s MEM STORE LOCATION

;1ST LINE VIDEO LOCATION
;NUMBER OF BYTES TO MOVE
;DO IT.

;NUMBER OF STORED FRAMD
;SUBTRACT 5

; GOTO RESET IF ZERO

;s NUMBER OF STORED FRAME
;ADD +1 TO 'A' REGISTER
; UPDATE FRAME COUNTER

; CURRENT FRAME LOCATIOHN
;BYTES NOW DISPLAYED
;ADD +1024 TO HL REG

;s UPDATE PLACE LOCATION

; GOTO THE END
;REINITIALIZE AT +1
;LOAD +1 IN COUNT MEM

s REINITIALIZED AT 27200
;STASH 27200 IN PLACE MEM
; GOTO THE END

;EL FIN = EL BEGIN

Handbook for the

very pleased with

information,

II ROM in

anywhere.
functions
commands .

in general,
And there's more!

valuable.

(it's
guarantee!
simply return

Lansing, MI

not

The

TRS-80
it; it's

by Richcraft Engineering.
180 pages
with no duplication from Volume I!
complete disassembled listing (about 60 pages) of the

780 mnemonics, something that has yet to appear
There's a detailed commentary
included
There's an informative discussion of disassembly

in Vol.

IT'S FINALLY HERL!!

of the Disassembled

We're

of very useful
There's a

Level

on all Level 1II
including all string

with specific application to the Level II ROM.

48910.
For those desiring, Vol.

it for a

We think you'll find Vol. I
price is
heavy!)--and
If you're not pleased with it for
full refund.
Just send $16.00 to The Alternate Source, 1806
ASAP deliverY.
I is still available for $10!!

only
it comes

3/10

I of the Handbook
$15.00 plus $1.00 shipping

extremely
a 100% money back
some reason,
Order yours today!
Ada Street,

too!

THE ALTERNATE SOURCE Vol. I, No. 3

86 AIDS

Dear Jesse Bob,

I'm writing a game called "CARTHQUAKE" . I want to
sinulate a quake by rapidly switchire the screen between 32
and 64 character mode. How can I do this without clearing
the screen? Also, are you really a software cowboy?

Arnie Richter

Dear Arnie,
The following line will make your screen shake like a
long-tailed cat in a room full of rockers:

100 FORX=1T01000:OUTZSS,B:OUTZSS,O:NEXTX

With regard to your second question, Son--'ol Jesse
Bob has been bustin' bits since you was knee-high to a
Horned Toad! Right now me an' the boys ride herd on over
700,000 bits, and pardner, that's a bunch!
JB

Dear Jesse Bob,

My TRS-80 is driving me up the wall! Periodically, it
reports a SYNTAX ERROR on a perfectly good line. Sometimes
it won't boot. Every time I take it to the Radio Shack
Sexrvice Center, the problems don't show up, and it works
good for two or three weeks. What can I do?

Baffled in Buffalo

Dear Baffled,

This problem is a burr under the saddle of almost
every '80 owner sooner or later. It is caused by a
corrosion in the connection between the computer and the
Exapansion Interface or between the E.I. and the disk. The
edge connectors from most cables are gold-plated, while the
TRS~80 printed circuits are not. When electrical current
flows through this junction, it causes an electrolytic
reaction that causes corrosion. When this corrosion gets
bad enough it becomes hard for the computer to discriminate
between logic 1 and logic 0 signals. Then all kinds of
strange things can happen.

When you take the connection apart some of the
corrosion comes off and it works again for a while. A
better cure is to take an eraser (Pink Pearl by
Eberhard-Faber is a good one) and rub it over the exposed
edges of each P.C. card where the cables connect. Notice
the black "crud" that the eraser picks up. Repeat whenever

3/11

THE ALTERNATE SOURCE vol. I, No. 3

erratic operation is noticed.
JB

Dear Jesse Bob,

Yesterday I spent four and a half hours typing in a
program. Before I could save it, my computer locked up in
the dreaded "Silent Death". It took four hours for the
police and my wife to talk me in off the ledge.

What causes this malady, and how can I recover? If I
push the RESET button the system either reboots, or goes to
"MEMORY SIZE?", neither one of which lets me get my program
back.

Despondent in Detroit

Dear Despondent,

The "Silent Death" is a snake that bites all of us
sooner or later. The term "Silent Death" is wused to
describe a situation in which the computer apparently locks
up and refuses to BREAK or accept any keyboard input, with
no visible activity taking place.

What causes it? Anything which causes the computer to
get "lost" while executing machine language instructions.
This may, in turn, be due to many things. A bad bit in
RAM, a "noise" glitch on the power line, or poor cable
connections {see the previous letter). Not all such deaths
are silent. Some will result in a re-boot while others
will result in the system stack overflowing into the video
RAM, leaving a trail of trash on the screen. The important
thing to remember is that the 280 microprocessor in a
TRS-80 will execute anything that it finds on its data bus
as instructions and is quite incapable of sorting out the
logical stuff from random nonsense.

How do you recover? Well, it is essential that you
regain control of the computer. This can usually be
accomplished only by pushing the RESET button. When you do
this a special signal is fed into the 280 forcing it to
execute its next command from memory address 0. This is
the initialization routine in the Level II ROM. The first
thing that this routine does is to check for the presence
of an Expansion Interface in the system (by looking for the
disk controller chip). If an E.I. is found, a program is
initiated to read track 0, sector 0 (the boot program) into
memory. This causes the DOS to be reloaded. If you are
using a disk and running TRSDOS 2.3 or NEWDOS, it is
possible to type the command 'BASIC *', which will reload
Disk Basic without disturbing all of the pointers in
memory, so that any program in memory may be reclaimed to
be saved on the disk. The procedure is dependent on
nothing in memory being destroyed, which is not always the

3/12

THE ALTERNATE SOURCE Vol. I, No. 3

case.

If the BREAK key is held down during a RESET, the disk
test is bypassed and control passes to Level TII at the
"MEMORY SIZE?" question. This procedure leaves no option
for recorery of lost data, and will cause complete
initialization of the Level II RAM,

If no E.I. is present when RESET is pressed, control
passes to the "READY" state of Basic, which allows quick
recovery. Perhaps this is why the "Silent Death" so seldom
strikes when one has no disk ~-- recovery is automatic.

How does one recover from "Silent Death"? Well,
except for the 'BASIC *' trick mentioned above, there is no
good method. In some cases it may not be good to recover,
since memory may have been farkled (a software cowboy term
for messed wup) by the %80 in its wanderings. Probably the
best recovery is good defense. Test the RAM you bought
from the door-to-door salesman before using it on critical
data. Don't run your computer from the same outlet that
your brother-in-law is using a power saw in. Keep your
connectors clean (Pink Pearl). Use a power line filter if
line noise is a problem. Keep good backup. When entering
long programs, stop from time to time and "SAVE" what you
have entered. This will prevent you from having to key in
everything from the start. Remember the words of the
prophet Mur-fee: "Blessed are the pessimists for they
shall never be disappointed!"

If you have a technical question that you have been
unable to get an answer for, send it to TAS for review by
Jesse Bob. Only a few letters will be answered in each
issue. Technical consultation is also available by
purchase. Simply inchude $6.00 with your question. If the
answer is published, or cannot be provided within 60 days
your check will be returned. Otherwise Jesse Bob or one of
his wranglers will send You an answer by mail.

ABOUT JESSE BOB:

Jesse Bob Overholt is the proprieter of the famed
Circle J Software Ranch. Located in the fertile plains of
Carrollton, Texas, the Circle J is 180,000 microacres of
prime ranchland. Jesse Bob's herd of bits produces fine
software for TRS-80's all over the world. As Jesse Bob
says, "Every little bit counts!"

(Jesse Bob qualifies for the ‘author of the month' contest
~- see details under SURVEY on page 221!)

3/13

THE ALTERNATE SOURCE vol. I, No. 3

(Part two of this series is scheduled for Issue #4. Dennis
has offered to continue the series, but we will leave that

up to you--if you liked the article, and would like to see
it continued, please let us know!)

WHEN YOU TURN IT ON
POWER-UP ROUTINES OF THE TRS-80
By Dennis Bathory Kitsz

(Part One)

The initialization routine of the TRS-80 is a
complicated and very interesting aspect of the computer.
it must, of course, set up all the parameters that will be
used by Basic programs, but it also conducts a series of
tests and makes hardware adjustments to the device.

It has double-checks to assure the proper operation
of memory, and to be certain that the parameters needed for
proper operation of programs will be present. This article
will take a look at the process of initialization, and how
understanding this procedure is fairly essential to writing
elegant machine-language programs for the TRS-80.

Let's look at the first few instructions.

ORG 0000H
DI

XOR A

Jp 0674H

At power-up, the 2-80 chip "homes in" on address
0000, and begins its execution there. The first action is
significant: DI, pisable Interrupt, keeps the clock
heartbeat generated by the expansion interface from
disturbing any actions of the computer - particularly since
the necessary software for handling that interrupt request
is not in ROM, but rather a part of the Disc Basic
routines, or what is now offered as "Level III" Basic.

So the interrupt is masked out. XOR A is the
process of "exclusive-ORing" the accumulator. Exclusive OR
is a logical operation which states: of two elements,
either may be zero or one, but not both. Thus, whatever is
present in the accumulator is "XORed"” with itself. since
each bit is identical with is Exclusive-Or partner, each
bit will be set to zero. This effectively clears the
accumulator.

3/14

THE ALTERNATE SOURCE Vol. I, No. 3

The final instruction of the group, JP 0674H, '"gets
out of the way" of the 2-80's low memory, for it is in this
area that the chip's "restart" codes - very frequently used
subroutines - are found. Going on:

ORG 0674H
ouT (OFFH) ,A
LD HL,06D2H
LD DE,4000H
LD BC,0036H
LDIR

DEC a

DEC A

JR NZ ,$-0DH

After the Jjump to 0674H, the routine resets the
output flip-flop at port ff (255 decimal). This flipflop
controls both cassette functions and 32-character video,
and by outputting the wvalue in A (0, since it was
exclusive-ORed earlier), the cassette will be off, no data
will be present at its input, and video will come up
normally.

Following this is an interesting (and encouraging)
piece of code. Using the z-80's powerful "LDIR" command, 54
bytes stored at address 06d2H are transferred to the RAM
address area starting at 4000H. These are the most
important pieces of information the TRS-80 must have, so
the writers of this pProgram took great care to insure that
this transfer is certain. This LDIR instruction itself,
for those unfamiliar with it, takes data stored at an
address specified by register HL (in this case, 06d2H) , and
moves a block whose length is specified by register BC
(36H, or 54 decimal) , to the location indicated by register
DE (4000H) .

The interesting part is found just below. The
value in A (0) is decremented twice (to FE) , and the
identical transfer instruction is repeated. This goes on
until a reaches zero again - a total of 128 times! We may
draw the conclusion that the Z2-80 chip probably reaches
full power and begins operating before memory gets to the
point where it can accept data...therefore, the instruction
is repeated over a period of approximately 14 milliseconds.

Now a portion of RAM is cleared to zero with the
following few commands:

LD B,27H
1D (DE) ,a
INC DE
DJINZ $-2

3/15

THE ALTERNATE SOURCE vol. I, No. 3

Recall that after the previous set-up process, the
accumulator again contains zero. Here, a block of RAM
specified by the DE register (essentially where we left
off) is loaded with zero. Using the fast "DINZ" (decrement
B, jump if not zero) instruction, 39 bytes are fixed at
Zero.

A few instructions follow that are very significant
at power-up. Address 3840H contains the keyboard row where
the "break" key sits. It is connected to data line 4; thus
the instruction and 04 checks to see if it is held down.
If it is being held down, the result of the and instruction
will not be zero...and a jump to address 0075H will be
made. This is why expansion interface owners without Disc
must press that key at power-up:

LD A, (3840H)
AND 04
Jp NZ,0075H

Since we have mentioned Disc, then, how does the
TRS~-80 find out that a Disc drive is in fact connected to
the interface? The answer to that - and to the reason the

computer "hangs up" when an expansion interface is
connected without a Disc - is found in the next few bytes
of code:

LD SP,407DH

LD A, (37eCH)

INC A

cp 02

Jp C,0075H

The stack pointer is set at 407DH for wuse by
potential future programs; it is out of the way of all the
Basic pointers set up in the first data transfer, for
experienced machine-language programmers, an obvious but
important action.

The accumulator is then loaded with the contents of
memory location 37ECH. There is no "memory" per se at
address 37ECH; it is ’'instead an instance of "memory
mapping". That is, when reading this memory cell, a signal
is sent to the expansion interface. That signal strobes
information from the "Floppy Disc Controller" to the
TRS-80. What will it find?

If no expansion interface is connected, there is no
signal to strobe. Hence, the value will be floating, not
pulled to ground (zero) on any bit. The computer sees all
bits apparently "high" at this location, and interprets it
as Binary 11111111, that is, Hex FF.

3/16

THE ALTERNATE SOURCE Vol. I, No. 3

The next instruction increments the accunmulator, in
this case resulting in FF+1, or 00. In the next
instruction this value is compared to 2. A compare (in
effect a subtraction, but with no "result") will cause the
carry flag to be set, since 0 minus 2 is negative.*
(*Footnote: Why compare with 027 Why not Jjust 01, as a
carry would still be generated? My suspicion is that it is
possible for those data lines to "float" in the low state.
IN that case the CPU would "see" 0000Gw¢'0, with the INC a
instruction resulting in a value of 01 - ;which is still
incorrect. So a compare with 02 guarantees the presence or
absence of the Disc Controller.)

Once the carry flag has been set, the instruction
JP C,0075 would be executed, sending the program to address
0075H. For the moment, however, let's assume that an
expansion interface is connected to the TRS-80.

The Floppy Disc Controller, when queried by the
command LD A, (37ECH), will respond with 80H. Incremented
;by one it becomes 81H, and comparing it with 02 generates
no carry. The JP C,0075H is thus ignored, and the program
simply goes on to find:

LD A,01

LD (37E1H) ,A
LD HL,37ECH
LD DE, 37EFH
LD (HL) ,03

The accumulator is set to 1, and address 37E1H is
made to accept the contents of the accumulator. Again,
37E1H is a location "memory mapped" in the expansion
interface. It simply selects Disc drive number . one. You
may recall that the Disc operating program is always in
drive number one; this assures that the TRS-80 +turns on
only the correct drive.

That done, it loads HL with the Disc Controller
address (37ECH), and sends out an "acknowledge" signal -
03, or 00000011 Binary. This tells the Controller to start
the Disc rolling. Register DE is prepared by 1loading it
with the Disc's data address, 37EFH. Now:

LD BC,0000
CALL 0060H
ORG 0060H
DEC BC

LD A,B

OR C

JR NZ,$-3
RET

3/17

THE ALTERNATE SOURCE vol. I, No. 3

This is a short, but very useful, subroutine. Ycu
may in fact want to call this yourself from time to time.
Found at address 0060H is a simple delay loop - load the BC
register pair (as is done just before the call
instruction), and it is decremented and tested until it
reaches =zero. When it finally reaches =zero, a return
instruction sends the Z-80 back to the main program flow.

Why a delay? Merely to give the Disc drive time to
come up to speed =~ again obvious, but very important.
Moving ahead with this branch of the program:

ORG 06B2H
BIT 0, (HL)
JR NZ,$-2

This is a loop which waits until the Disc contrel
chip says "Okay, Disc is up to speed and everything looks
pretty good", and sends along a zero. The program loop
tests this bit until it receives a zero. And it is this
loop which is maddening to you expansion interface owners

who have no Disc drive. Like all the previous
memory-mapped addresses, 37ECH will never have that zero
forever - but we'll address that later (pun intended?). In

the meantime, the loop has found the acknowledging zero
sent by the floppy Disc Controller:

XOR a

LD (37EEH) ,A
LD BC,4200H
LD A,8CH

LD (4L) ,A
BIT 1, (HL)
JR Z,$-2

LD A, (DE)
LD (BC) ,A
INC o

JR NZ,$~7

The accumulator is cleared again, and the BC
register is set to 4200H. This will be an area of RAM set
aside for Disc wuse. 37EEH is loaded with 0, and 37ECH is
loaded with byte 8CH. This says "Let's go, Disc!", and the
Floppy Disc Controller starts sending in the bytes - it
sends out a "here comes the byte" message to the computer
via address 37ECH, and the machine loops until that signal
shows up. When it does, the accumulator looks for what it
finds in the memory location specified by the DE register.
DE, you recall, is set to address 37EFH. This is the
memory-mapped location through which the actual data will
flow.

3/18

THE ALTERNATE SOURCE Vol. I, No. 3

The accumulator picks up the data from DE, stores
it in the RAM memory location indicated by BC (4200H); the
next instruction increments register C so that location
4201 is ready. The program loops back, waits for another
message from the Disc Controller, picks up a byte! and
stores it. When register C finally reaches 0, ;jpointing to
address 4300H), the loop terminates, Then:

JP 4200H

Here the Disc system takes over completely. As you
recall, starting at 4200H data from the Disc has been
stored. By jumping to that location, the program directicn
is wrested from ROM and given to the first 256 bytes of the
Disc systemn.

In the next issue of "The Alternate Source”, we
will look at the rest of the initialization process - how
the TRS-80 knows how much memory is on 1line, what happens
when some memory is bad, and how the words "memory size"
make their appearance on the screen.

NEW FROM TAS!!

We have increased our product 1line irmensly in the
last two months. Subscribers will soon be receiving an
updated flyer listing some of our new products. Others may
write or call for further info. Among them:

We are now handling subscriptions for the MTC Bulletin
Service, which is $36.00/year. Bulletins are similar to
that on page 6, and are mailed first class when the news
breaks, not just monthly. Free year-end index with all
subs. Order through TAS and receive free notebook for
storage! Write either: Meta-Tech, 26111 Brush Avenue,
Euclid, OH 44132, or TAS. Be sure to indicate whether you
would like your sub starting from the beginning or with the
NEXT bulletin.

Inside Level 1II is now available from TAS for $15.95
postpaid (see description in Bulletin Board) .

Orders should be mailed to: The Alternate Source,

1806 Ada Street, Lansing, MI 48910. Master Charge or Visa
by phone: 517/485-0344 or 517/487-3358. We will ship COD.

3/19

THE ALTERNATE SOURCE Vol. I, No. 3

MYSTERY PROGRAM

By Charley Butler

(What does it do? One may never know, unless one enters it
into their TRS-80! This program was written by Charley in
one of his more sadistic moods. We hope you find it
interesting!)

PROGRAM LISTING

0 'THE ALTERNATE SOURCE MYSTERY PROGRAM

5 'IT'S EASIER TO DEMONSTRATE THAN EXPLAIN!!

10 FOR X = 28707 TO 28814 : READ A : POKE X,A : NEXT
20 POKE 16633,143 : POKE 16635,143 : POKE 16637,143

30 POKE 16634,112 : POKE 16634,112 : POKE 16634,112

40 POKE 16548,36 : POKE 16549 ,112

50 CLS:LIST

60 DATAO,68,112,10,0,76,69,65,82,78,32,65,76¢,7¢,32

70 DATA65,66,160,32,83,69,76,70,206,77,79,68,143,89,73
75 DATA78,71,0,102,112,20,0,89,79,85

80 DATAB2,32,79,87,78,32,80,82,79,71,82,65,77,83,206
90 DATA206,67,79,77,73,78,71,32,83,79,161,0,140,112,30
100 DATA0,73,78,32,58,147,251,84,72,69,32,65,76,84,69
110 DATAS82,78,65,84,69,32,83,79,85,82,67,69,32,78,69
120 paTas7,83,39,33,0,0,0,28.

130 'DOUBLE CHECK DATA BEFORE RUNNING!

140 'IF ALL ELSE FAILS, TRY LISTING THE PROGRAM AGAIN!

3 ? §

Enjoy...

? U
O

)

3/20

THE CODE BOOK
All About Unbreakabie Codes and How to Use Them
BY MICHAEL E. MAROTTA

What information do you want to keep safe from the
prying eyes of Big Brother?

* Financial records

* Secret formulas

* Directions to buried or hidden valuables

© Or other sensitive data you want to kesp PRIVATE

Yes, now you can write codes that are unbreakable!

This amazing new book shows you how.

Complete detaiuls for writing unbreakable codes
are given for:

° doing It by hand

® using a pocket calculator

® using a microcomputer

Contents include: What A Code Is; A Brief History
Of Codes And Ciphers; How Codes And Ciphers Are
Broken; How To Write An Unbreakable Code; Un-
breakable Codes And The Home Computer; Obfus-
cation; Thoughts On Secrets In General; and more!
Also iincluded are computer programs, tables of
random numbers, instructions for generating your
own random numbers, how to test a string of numbers
for randomness, an extensive bibliography, and more!

Obscure secrets known only to international es-
pionage agents and professional cryptographers --
now revealed for you to use!!! EVERYTHING you need
to know to write your own unbreakable codes is
covered in this astonishing new book!

Don't miss this onell!

5% x 8%, 76 pp, Mustrated, pertect bound soft cover.
THE CODE BOOK: $6.95 + $1.00 shipping.

A “one-time” pad of the type used by
International espionage agenis to write un-

ORDER FROM: breakable codes. Complete step-by-step in-
"°°'.','S',’;'.f‘ ;lsrzllglled structions for writing unbreakable codes
Mason, M1 45854 using a “one-time” pad are given In THE
S CODE BOOK, along with other ways of

writing unbreakable codes.

3/21

THE ALTERNATE SOURCE Vol. I, No. 3
TAS SURVEY #3
First, the winners of our Survey #1 are:
Harry Maurer, of Succasunna, NJ
James Lisowski, of S. Milwaukee, WI
Patrick Morgan, of Los Angeles, CA
A ten dollar certificate has been awarded to these three

gentlemen, which they can use in conjunction with ANYTHING
offered by TAS. The certificates are just like <cash, and
may be used even with our special deals! We would like to

extend our thanks to all who participated.

For this month's survey, we would like to rehash a theme

used elsewhere. There shouldn't be much question that the
thing that makes most magazines tick is the authors. Ve
want to couple this month's survey with a method of

rewarding both you and your favorite author.

Simply choose your favorite article (and author) from this
issue of TAS, and write it on a separate slip of paper
(along with your name and address), and send it to: TAS
Survey #3, 1806 Ada Street, Lansing, MI 48910. We will
award $10.00 certificates to three participants, and a
$25.00 award to the winning author.

Winners of Survey #2 will be announced in Issue #4; winners
of Survey #3 will be announced Issue #5.

Games and Things . . .

New first offerings in the Games Department:

Cribbage — by Richard Vossel. Not only does it
play a super game, but this version contains a
‘Help’ function. Ask the computer what s/he or
it would do — but only if you're losing! DOS
and cassette versions are coded slightly different
so please choose the one for your environment
Cassette $16.95, Diskette $19.95

A new series of games by Brandon Rigley —
a name you WiLL be seeing more!

o Mental Lepse — the best graphics to hit
the market in months! Coupled with a great
idea, we believe we've got a winner!
Cassette $12.95, Diskette $15.95

o Superkey — a graphics typewriter like
you've never seen! $9.95/$12.95
o Blilboard — Generate posters for all your

social functions quick and easy.
$9.95/$12.95

e Curtains — Concentration exhaulted! Vie
to reveal certain random combinations
with several unique new twists!
$9.95/$12.95

© Jungle — a hierarchy of complexity. Getting
through the jungle is rough enough in the
daytime, so whaddayado at night?
$9.95/$12.95

A special introductory offer for a limited time
only: You may order any of the last four
programs (Superkey, Billboard, Curtains and
Jungle) on a single media and deduct an
additional 5% for each one ordered — or 20%
for all four!

Order today from The Alternate Source, 1806
Ada, Lansing, MI 48910. All programs are
designed with your satisfaction in mind — and
we guarantee it! Any program which originates
with the Alternate Source may be returned for
arefund for up to 30 days after our shipping date

3/22

THE ALTERNATE SOURCE Vol. I, No. 3

THE ALTERNATE SOURCE
The Magazine Of Advanced Applications And Software

"I think your approach is terrific; a magazine devoted to
someone other than the beginner has been sorely needed on
the market for a long time."

Pendleton, IN

"1f you keep this up, you'll not only have a winner, but
you will also provide a valuable service to many, many
TRS-80 computerists.”

Houston, TX

"Along with the OCTUG Newsletter, yours is the best T've
seen for important info on the TRS-80."
Atlanta, GA

"I'd 1like to say that I'm glad I took the gamble and
subscribed to The Alternate Source lews; it looks 1like I
made the right choice. Keep up the good work!"

Makawao, HI

"Of the several TRS-80 publications I take, I like The
Alternate Source News the best so far!"
Studio City, CA

"I was so pleased at being approached as if I knew
something about computers and programming, that I not only
read every word, but am also enclosing a check for nine
dollars."

Canoga Park, CA

"I Jjust received my copy of Issue #2 of TAS. I'm really
impressed. You've done a great job!"
Waukegan, IL

"Okay, I'm hooked. Enclosed is my $9.00 check."
Franconia, VA

If you're serious about programming, you should
seriously consider The Alternate Source News.

() Enclosed is $9.00 for six issues. Please start ny
subscription with Issue # (1, 2, 3 or 42).
() Enclosed is $2.00 for a single copy of Issue # R

Name : MAIL TO:

Address: THE ALTERNATE SOURCE
City: 1806 Ada Street
State, Zip: Lansing, MI 48910

3/23

MICROLINE S@ ova i AkL!
9X7 DOT MATRIX DREAM ™MAC!

FERTURES

OK IDATA PRINTER

T CHRRACTER SiZES ¢ 1E.5 1@ & S CHAR./INCHS
Z LINE SPACINGS + € & £ LINES/INCH ¢

2 LINE LENGTHS LONG & SHORY L INE ™MODE
FULL TRE-BQ + GRAPHICS CHARALTER SET

ALL PRINTING MODES SOF TWARE SELECTAELE

ELONGATED LETTER 5 CHAR. 7/ INCH

PHRERE (w4, -, /@1 ZTUSE7ES: 5 (=) IRABCDEFGHI JNLMNOPORSTUVIWRYZ T s o0

o 0t PR L el

earstuvwkyz{i}”

THRERAT e, ~, /@1 ITASETE
abcdefan ok oy

NORMAL LETTER @ CmAR, 7INCH

CONOENSED LETTER 16.5 CHRR./INGH

an

LT S Pkl

STl e e

5 (=) MGABLLEF GH I IR MNDPDRG TUVWXY 21 oo
STUVWKYZLIET % 1T 0 PRkl ¢ T)T ol D

SoreddRdh
THIS IS 8 LINE/INCH THIS IS & LINE/INCH
THIS IS € LINE/INCH
THIS IS 8 LINEZINGH
THIZ 12 8 HINE/INGh THIS IS & LINE/INCH
THIS 1§ § CINE/INGH THIS IS € LINE/INCH
THIS IS & LINe/INEH THIS IE 6 LINE/INCH
Teg R Sk Rfrad
iug —
12 e 0
= 0EM
0 = bR
£ = ER05E
F = FORTH
6= 60
L= LA
"= ve
R = HEVERSE
S = SVE
W= WITET
1 = NTERRPT
=16
PRICE 4866, 08 MICROLINE-E0
$120. 0 TRACTOR FEED
s 35.00 CABLE
. TAX & SHIPPING IF APPLICABLE

FOR MORE INFORMATION CALL OR WRITE: BOE ZWEMER. DREAM MRCHINES,

6408 S.

WASH. » LANSING, MI.. 48918 (S17) T9T-9287 (AFTER € PM)

FOR A FREE SAMPLE SEND SASE

3/24

THE ALTERNATE SOURCE Vol. I, No. 3

MICRODOS REVIEW

By William Perry

After finally making the decision to wupgrade my 16K
TRS-80 system to 32K and one disk drive, I was soon faced
with another problem. TRSDOS (Radio Shack's disk operating
system, required in drive 0) gobbles up about 40% of the
usable diskette space. Many people have solved the problem
by adding a second disk drive. This allows them to use all
the diskette in drive 1, however another disk drive is a
rather expensive solution. Some have simply used more
diskettes than they had originally planned. I decided to
try MICRODOS.

MICRODOS is published by Percom Data Co., Inc. of
Garland Texas. It is easily used, and also very efficient.
Although it was written for the 40 track (400 sectors, 255
bytes each) Percom drives, the documentation includes
patches necessary to adapt it to the 35 track (350 sectors)
Radio Shack drives. MICRODOS sells for $29.95 (much
cheaper than a second drive!), and delivery time is about
two weeks.

Initially, the printed documentation seemed somewhat
lacking, but I found it sufficient and understandall¢ after
digging in. What really gets you on the right track is the
close examination of the four BASIC language programs that
are included on the system diskette. Briefly, these
programs are:

PERCOM 5 1/4 INCH NOTEBOOK - This program describes all of
the MICRODOS commands on the video display. This program
also allows the user to add his own "pages" to the
"notebook" for later reference. 1In addition to having the
online documentation, listing the program will provide some
insight on data file handling techniques.

DISK UTILITY PACKAGE - This program is menu driven and
provides routines to format, backup, copy, erase, etc. all
or part of a diskette.

FILE MANAGEMENT PROGRAM - This program provides a means of
manually maintaining a directory on a data file. I was not
too enthused about doing this manually. I found it simpler
to write my own small menu program which would load and run
the desired program by typing the number shown on the menu
(see program following article for an example).

DISK DIAGNOSTIC TEST - This program puts the disk drive
through its paces and reports any errors.

The advantages of MICRODOS are many; for example,

3/25

THE ALTERNATE SOURCE Vol. I, No. 3

LOADING SPEED. Basic programs that take 3 minutes to load
from tape, or 16 seconds TRSDOS loading time, require just
4.6 seconds using MICRODOS. MICRODOS is MEMORY KESIDENT -
at power-up, the entire disk operating system is booted
into less than 7K of RAM, and no longer requires a system
diskette in drive 0. But, if you decide to have MICRODOS
on each diskette, it will only use sectors 0 through 19,
leaving 380 sectors on a 40 track disk, or 330 sectors on a
35 track disk. MICRODOS is also efficient in its SECTOR
ALLOCATION. Since disk space 1is allocated by sector,
rather than 5 sector granules, there are no unavoidable
gaps between programs or files. This obviously provides
better diskette utilization.

Programming with MICRODOS 1is no headache--consider,
for example, the following commands:

PUT X$,20 - This will write the contents of X$ onto
sector 20.

GET X$,20 - This will read the contents of sector
20 into variable X$.

LOAD 20,R - This will load and run the program
starting on sector 20. The R may be
omitted if you do not want to immediately
execute the program.

MERGE 40 - This will add the program beginning on
sector 40 to the one currently in memory.

CMD"I",0 - This will format a blank diskette and
write MICRODOS on sectors 0-19.

With MICRODOS, there is no need to worry about opening
or closing a file (there 1is no directory). It also
supports FIELD definition statements for packing several
data items into one sector.

MICRODOS does have some shortcomings. For one thing,
MICRODOS is strictly BASIC oriented; there are no
provisions for storing a "system" loaded program on disk
(other than MICRODOS itself). MICRODOS does not support
such functions as DEBUG or CLOCK. And, as mentioned
previously, MICRODOS doesn't feature a DIRECTORY. Since
MICRODOS contains no automatic space allocation system, you
must tell it which sector to read, write, save or load.
This requires you to do some manual "bookkeeping" to make
the most efficient use of a diskette or keep from
overwriting another file. Although this sounds horrifying,
it is no more trouble than recording your tape counter
readings on your cassette labels. The SAVE command will
tell you the last sector it used. The next SAVE, simply
specify the next sector. Considering this in conjunction
with the menu program following this article, I do not feel
this problem is too significant.

Although MICRODOS has been heralded as THE disk
operating system for a 16K, one drive system, few TRS-80

3/26

THE ALTERNATE SOURCE Vol. I, No. 3

owners will find the remaining 8K sufficient space for most
of their Basic programs.
In summary, I feel MICRODOS will complimert any disk

system and will pay for itself in éisk purchase alone. It
is handy tc have 25 or so programs plus the operating
system on one side of one diskette. I intend to use it

exclusively for Basic programs and data, kut at present,
TRSDOS is still a necessity for the machine language
programs.

FIRST OFFERINGS FROM TAS !

BTRACE: Lii or DOS. The TRS-80 TRON command can be a great aid to debugging programs
Unfortunately, it holds no respect for screen prompts. BTRACE displays the current line being
executed in one convenient position, and preserves the current cursor location

CPU: LIl or DOS. Compress Program Utility removes all unnecessary spaces and remarks from
a Basic program with complete regard for unclosed strings, unusual commands (such as ERL
and when RUN is embedded in your program).

SEARCH: LIl or DOS. Search lists any Basic program lines containing an occurance of a
STRING select. You can break at any time to make changes, or continue Option allows
LPRINTED listing

Each of these utilities are, we feel, the best (or only) available of their type. The price of each is
$19.95 on cassette. Add $2.00 for diskette. Some factors you may wish to take into consideration
when examining competitive software products:

1. Each is written in Z80 assembly language for fast execution
2. Each is complete with easy to understand instruction

3 Each comes complete with a special relocating module to allow you to create a disk or
tape file at any address you specify! This will allow you to use each program in conjunction
any other machine language routines or utilities you may wish to use

AND THERE’S MORE !!

RELOC: allows you to incorporate the relocating module mentioned above with your own
machine language programs. You can now have one version that will be compatible with drivers,
GSF, RSM or whatever other machine language programs you use RELOC is $29.95 on cassette
or $31.95 on diskette. Sample file and instructions included

REPLACE: allows you to search and replace occurances in your Basic programs saved (saved
as ASCII files). $14.95 on cassette, $16.95 on diskette.

CHANGES: generates a screen or printed listing of differences between versions of programs
you are developing. $14.95 on cassette, $16.95 on diskette.

PPD: is a parallel print driver that allows you to pass parameters to do such things as ‘bypass’
LPRINTED output, insure that the line printer is ready, and more. $9.95 on cassette, $11.95 on
diskette. Add $3.00 for source code.

SPECIAL INTRODUCTORY OFFER: (for as long as author permits) Two special package
deals! 1) BTRACE, CPU, SEARCH, REPLACE and CHANGES are available at the package price
of just $49.95! You save an incredible $39.80!! 2) ALL of the above programs are available for
only $69.95! You save an unbelievable $59.70!! Specify Level Il or DOS, and include $2.00
shipping costs when ordering either package.

TO ORDER: Send a check or money order (no cash, please) and include 50 cents per program
shipping costs ($2.00 for package). Mail to: The Alternate Source, 1806 Ada Street, Lansing,
M1 48910. Orders shipped within 48 hours.

3/27

THE ALTERNATE SOURCE Vol. I, No. 3

BULLETIN BCARD

An unsolicited, well deserved plug: three new books we've
added to The Alternate Source Library. All have a very
special purpose; the first two are written by Dr. Dave
Lein, the last by Dr. John Blattner.

Number 1: Undoubtedly computer magazines are the

cheapest source of legitimate software.
Unfortunately, except for a few sparkling
exceptions, not all software is written for the
TRS-80. THE BASIC HANDBOOK compares

idiosyncrasies in over 50 different computers.
For most unusual commands, there are examples of
how to program around this problem.

Number 2: will make you ready for some of the
dynamite programs up and coming in TAS. LEARNING
LEVEL II is the unofficial extensior of the lucid
Level I manual.

Number 3: is yet another well written,
comprehensive guide to the internal operations of
the Level II ROM and RAM. The book is 65 pages
in length, and is broken down into two parts.
Part one provides the assembly language
programmer with everything he needs to access the
sophisticated Microsoft routines already resident
in ROM. Part two of the book covers the linking
of assembly language with Basic.

All three books are in the $15.00 range, and worth
their weight in gold! You can purchase the first twe from
Compusoft, 8643 Navajo Road, San Diego, CA 92119.
(714/465-3322). Inside Level II can be purchased from TAS
(see ad elsewhere).

We've had such a lack of response from Users Groups, we
figured everyone had forsaken this valuable resource. Not
entirely so:

MILWAUKEE AREA TRS-80 USERS GROUP meets at 7:00
on the 1last Thursday of each month at Nino's
Steak Roundup, 3400 S. 108th Street, in
Milwaukee, WI. Write MATUG, Box 184, 53172.

WESTPORT USERS GROUP 80 is just getting under way
in the Norwalk, CT area. Write WUG-80, Box 726,
Belden Station, Norwalk 06852, or phone Mr.
Abrahamson @ 203/853-3861.

3/28

THE ALTERNATE SOURCE Vol. I, No. 3

A couple of items on Radio Shack printers +this issue. Ve
have two in-house printers, but neither is a R/S. I hope
the info herein is useful. Please advise. Regarding our
own article on printers, our faces are slightly red. The
May issue of Personal Computing has the most complete
dossier imaginable on printers of all types--starting with
the Quick Printer II and going through models costing
several grand. If you haven't picked up a copy of Personal
for awhile, you might want to consider it. They are
undergoing some personnel changes which usually results in
a change of format. The trend seeems to be toward
business/serious software, with perhaps rore support for
the TRS-80 than any non-exclusive TRS-80 mag on the market.
Twelve issues are still only $14.00!

Now that we got that out of the way, here's a couple of
guys with printers that need advice. 1In their own words:

"I have a need for a black box to connect Dbetween
my TRS-80 interface and my Diablo Terminal. The
black box should pick up LPRINT commands and
ccenvert them to RS-232 for the Diablo. I know
there are many adapters available, but they all
require a software driver. My problem is that
many utility programs change the lineprinter DCB
or clobber the memory I use to store my RS-232
driver software. So, what I need is a hardware
device that needs no software driver." Contact
Ken Knecht, 1340 W. 3rd St., Apt. #130, Yuma, AZ
85364.

and

"Could you please help me respecting my Anderson
Jacobson serial printer and the Radio Shack
SCRIPSIT? I have just obtained SCRIPSIT and
would 1like to wuse it, but have not been able to
print any text via the Radio Shack RS-232 C
(getting a RS-232 Interface NOT READY). 1In any
event, there appears to be no provision for
inserting the needed nulls in the serial output,
at least to the point I have reached. There does
not seem to be any provision either for using the
Small Systems Hardware TRS232. So, what should I
do in order to use SCRIPSIT and the AJ 8417 Any
ideas and suggestions would be very much
appreciated. Thank you." Contact Michael Maw,
125 East 84th -Street, New York, NY 10028.

Can anyone help these gentlemen?

3/29

THE ALTERNATE SOURCE Vol. I, No. 3

Contract programming in New York? You bet--the best. Jack
Bilinski has just announced the opening of 80-Microcomputer
Services, Inc. at 118 Mastan Ave., Cohoes, NY
(518/235-9007) . Jack relates that he's spent over 7000
hours studying the TRS-80 (hope he has a green screen!) and
we believe him. We haven't heard from his hoard of happy
customers (yet), but we've seen examples of what he can do.
He recently pointed out that the Spooler we sell (early
models) were looking for a Control-M instead of a
Control-N! (Blush!) Jack has reviewed several hundred
pieces of software personally just to make sure that his
customers get the advantage of having the best on the
market. Not only this, but he offers 30 day consultation
AFTER the sale! Better call now, before he gets busier
than a couple of would-be editors we know!

Richard C. Vanderburgh has nade sone interesting
enhancements to Sargon II (and some other programs). Using
a Quick Printer (any printer with a bell, which is CHR$(7))
Sargon II beeps after his move. You can also LPRINT board
configurations for the current move. He welcomes
suggestions for other enhancements and makes all available
at modest prices. Write to Richard at 9459 Taylorsville
Road, Dayton, OH 45424.

SPECIAL NOTE TO USERS GROUPS: Recently Central MI TUG has
experienced money problems. Dues have been maintained for
over a year at just $3.00. The recent loss of an ally in
the printing business as well as an unexpected jump in the
amount of ‘'rent' for a monthly meeting place has
jeopardized the clubs newsletter and possibly the club
organization itself. Several fund raising considerations
were proposed, one of which may have interest to other
groups. The suggestion is to have members contribute
original programs they have authored to the club library.
These can be distributed to members for a token amount,
such as one or two dollars, or even a donation. Members
would also have to provide their own media, naturally. The
idea was further expanded to offer this package to other
clubs at a nominal price for similar distribution. The
ideal goal is to help maintain the club treasury, while
sustaining a members reason for remaining with the club.
We at TAS think this is an excellent idea; the software
will be inexpensive, the library will increase, the dues
will remain the same, etc. Therefore, we'd like to know
what your group thinks. If you're interested, TAS will
list addresses of clubs with packages to sell (no charge
for now). Whaddayathink?

And that's all (!) for this issue!!

3/30

THE ALTERNATE SOURCE Vol. I, No. 3

02110
02112
02114
02116
02118
02120
02122
02124
02126
02128
02130
02132
02134
02136
02138
02140
02142
02144
02146
02148
02150
02152
02154
02156
02158
02160
02162
02164
02166
02168
02170
02172
02174
02176
02178
02180
02182
02184
02186
02188
02190
02192
02194
02196
02198
02200
02202
02204
02206
02208
02210
02212
02214

TE N N Ve NE NA Na NS NS Ne Ve Ne N NE NE NE N0 NS NS Ne N0 NS NS Ne NS No MO MO NO NS N0 WO e MO WO N0 NE N0 Ne Se %o w0 ne %o %6 we we wo N8 Ns we we wo

¥ % k% k& k *k Kk k k Xk *x k k k k Kk Kk k kX * *x kx * * *x *x % *

PROGRAM 'TWODISK' V1.1

BY ROXTON BAKER 4/80

56 SOUTH RD., ELLINGTON, CT. 0602¢ (203) §75-2483
* k k k Kk k k k k & k Kk k Kk k Kk k k * k Kk k x * * k * *

TWODISK IS A UTILITY THAT WILL ALLOW YOU TO PUT ONTO
DISK THOSE 16K LEVEL II PROGRAMS THAT ARE, FOR VARIOUS
REASONS, INCOMPATIBLE WITH DISK BASIC. SUCH A PROGRAM,
WHICH TWODISK STORES AS PROG2/CMD ON THE DISK, CAN
LATER BE LOADED AND RUN (IN LEVEL II) RIGHT FROM DISK.

THIS ROUTINE HAS BEEN TESTED ON NEWDOS 2.1 AND
TRSDOS 2.3. IT REQUIRLS 48K. IF YOU ENCOUNTER PROB-
LEMS WITH THIS SOFTWARE, PLEASL CONTACT THE AUTHOR!

ASSEMBLE THIS FILE AND SAVL IT WITH FILESPEC
TWODISK/CMD,

—===INSTRUCTIONS FOR USE===--
(FOLLOW THESE EXACTLY, IN THE SEQUENCE INDICATED)

TO USE, LOAD TWODISK/CMD FROM DOS. JUST USE THEL
'LOAD' COMMAND - DON'T EXECUTE IT YET.

THEN PUSH BREAK AND RESET TOGETIER 70 GET INTO LEVEL
II BASIC. SET MEMORY SIZE TO 65345 (OR LOWER IF
REQUIRED BY THE LEVEL II PROGRAM TO BE SAVED). THEN
LOAD IN THE LEVEL II PROGRAM - FROM TAPE OR HOWEVER.
IF IT HAS A SYSTEM TAPE THAT GOES WITH IT, LOAD THAT
TOO (AFTER THE BASIC PART!). YOU CAN LIST THI. LEVEL
IT PROGRAM, BUT SINCE IT MAY BE SELF-MODIFYING, DON'T
RUN IT.

WHEN THE PROGRAM (INCLUDING ANY SYSTEM PART) IS COM~-
PLETELY LOADED, TYPE: SYSTEM <ENTER> /65345 <ENTER>.
THE DISK DRIVE WILL RUN, AND DOS WILL BE BOOTED. NOW
EXECUTE TWODISK/CMD BY TYPING: TWODISK <ENTER>.

THE LEVEL II PROGRAM WILL BE PUT ONTO DISK UNDER THE
FILESPEC PROG2/CMD. YOU SHOULD IMMEDIATELY RENAME
THIS FILE TO SOMETHING MORE APPROPRIATE. REMEMBER
THAT THi NEXT TIME YOU EXECUTE TWODISK IT WILL OVER-
WRITE ANY FILE CALLED PROG2/CMD ON THE DISK!

TO EXECUTE THE LEVEL II PROGRAM FROM DOS, SIMPLY CALL
IT AS YOU WOULD ANY /CMD FILE. THAT WILL LOAD THE
PROGRAM INTO ITS PROPER PLACE AND JUMP YOU INTO LEVEL
II, FROM WHICH YOU CAN RUN 1IT.

ONE ASPECT OF TWODISK SHOULD BE NOTED. ALTHOUGH
TWODISK DOES AUTOMATICALLY HANDLE THE CASE WHERE THE
LEVEL II PROGRAM HAS A SYSTEM TAPE PART, IT DOES THIS

3/31

THE ALTERNATE SOURCE Vol. I, No. 3

02216
02218
02220
02222
02224
02226
02228
02230
02232
02234
02236
02238
02240
02242
02244
02246
02248
02250
02252
02254
02256
02258
02260
02262
02264
02266
02268
02270
02272
02274
02276
02278
02280
02282
02284
02286
02288
02290
02292
02294
02296
02298
02300
02302
02304
02306
02308
02310
02312
02314
02316
02318
02320
02322

WO NE NP NS Ne S NG Ne N e e Ne e Ne W Ne e we

-

’

BY SAVING OFF --ALL-- OF THE LOWER 16K OF MEMORY,

FROM 4000H TO 7FFFH. IT HAS TO DO THIS BECAUSE IT
HAS NO WAY OF KNOWING EXACTLY WHERE THE SYSTEM PART
WENT. THIS PROCEDURE IS OFTEN JUSTIFIED, BECAUSE

MANY LEVEL II SYSTEM ROUTINES DO GO AT THE TOP OF MEM-
ORY. BUT THE RESULT IS A 14 GRAN PROGRAM ON THE DISK.

THERE IS AN ALTERNATIVE. DEPENDING ON THE LOCATION
OF THE SYSTEM TAPE CODE IN MEMORY, YOU MAY USE THE
DOS UTILITIES TAPEDISK, DCV, TDISK, OR LMOFFSET TO
PUT THE SYSTEM CODE ONLY ONTO DISK. THEN USE TWODISK
ON THE BASIC PART OF THE LEVEL II PROGRAM (NOT FOR-
GETTING TO SET MEMORY SIZE, IF REQUIRED).

THIS WILL RESULT IN TWO DISK FILES; TO RUN THEM FROM

DOS YOU WOULD 'LOAD' THE SYSTEM CODE FILE AND THEN
EXECUTE THE PROG2/CMD FILE CREATED BY TWODISK.

PWRUP EQU 0000H ;FULL INITIALIZATION
LEVEL2 EQU 06CCH ;ENTER LEVEL II NICELY
DOSRET EQU 402DH ;RETURN TO DOS

CMDBUF EQU 4318H ;DOS COMMAND BUFFER
SYSADD EQU 40DFH ;HOLDS SYSTEM TAPE ENTRY
CMHLDE EQU 1C90H ; ROM COMPARES HL,DE
EPROGP EQU 40F9H ;POINTS TO END BASIC PROG
BOTTOM EQU 4000H :START OF MEM TO SAVE
BMOVE EQU 09D7H ;MOVES B BYTES

CMDINT EQU 4405H ;DOS COMMAND INTERPRETER
P2ENTR EQU 8000H ;ENTRY POINT PROG2/CMD
SAFETY EQU P2ENTR+18 ;WHERE LEVEL 1II PROG HELD

U Se Se S0 %6 %0 8 Nu %0 e N % e we

THE FOLLOWING START ADDRESS IS ALL THAT MUST BE
CHANGED TO RELOCATE TWODISK. IT MAY BE SET AT

ANY LOCATION BETWEEN CO12H AND FF45H. THE OBJECT CODE
PRODUCED IS 184 BYTES LONG, AND TWO BYTES MUST BE
AVAILABLE BEYOND THAT FOR THE TEMPORARY STORAGE LOCA-
TION 'TSTORE'. NOTE THAT CHANGING THE STARTING LOCA-
TION WILL REQUIRE THAT YOU ALSO USE A DIFFERENT MEMORY
SIZE UNDER LEVEL II, AND THAT THE '/' ENTRY POINT YOU
USE TO GET OUT OF LEVEL II BE CHANGED. FOR BOTH OF
THESE VALUES, USE THE DECIMAL EQUIVALENT OF THE START
ADDRESS YOU SPECIFY HERE :

TART EQU OFF41H ;DEC. EQUIV. IS 65345.
ORG START ; (EASY TO TYPE)

;

s e e e e e e e e e e e e e e e e e -

; ** ENTRY FROM LEVEL II **

L2ENTR LD HL,42E8H ;ENTRY FROM LEVEL II.
LD DE , (SYSADD) ;SEE IF SYSTEM TAPE WAS
CALL CMHLDE ; LOADED UNDER LEVEL II.
JR 2 ,BONLY ;IF HL=DE, NO SYSTEM TAPE

3/32

1T

wilre

THE ALTERNATE SQURCE Vol. I, No. 3

02324
02326
02328
02330
02332
02334
02336
02338
02340
02342
02344
02346
02348
02350
02352
02354
02356
02358
02360
02362
02364
02366
02368
02370
02372
02374
02376
02378
02380
02382
02384
02386
02388
02390
02392
02394
02396
02398
02400
02402
02404
02406
02408
02410
02412
02414
02416
02418
02420
02422
02424
02426
02428
02430

i
BONLY

MOVEUP

~

~ ~e

ASCII

i
SBR1

LD BC, 3FFFH ;IF ONE WAS, WL MUST SAVL
JR MOVEUP ; MEM FROM 400G TO 7FFF.
LD BC, (EPROGP) ;ELSE FIND END OF LEVEL
LD A,B ; II PROGRAM,
SUB 40H ;AND GET DIFF FROM 4000
LD B,A ; IN BC.
LD (TSTORE) ,BC ;SAVE #BYTES TO MOVE
LD HL,BOTTOM ; FROM 4000+,
LD DE ,SAFLTY ;WHERE PROC WILL BE HELD.
LDIR ;SLIDE IT UP THERL.
Jp PWRUP ;HAVING MOVED LEVEL II
i STUFF TO SAFETY, BOOT
; THE DOS.

** ENTRY FROM DOS **

LD . HL, (TSTORE) ;RETRIEVE #BYTES MOVED
LD (BYTNUM) ,HL ;PUT IN MOVEDOWN CODE
LD B,12H iNOW SLIDE MOVEDOWN CODE
LD DE ,MVDNCD ;7 DOWN INTO PLACE AT
LD HL,P2ENTR ;i P2ENTR+.

CALL BMOVE

LD HL, (TSTORE) ;CALC END ADDRESS, AND
DEC HL ;7 PUT ASCII IN DUMP CMD.
LD DE,SAFETY

ADD HL ,DE ;GETS END ADDRESS IN HL.
LD C,H

CALL ASCII ;CONVLRT H TO 2 ASCII'S
LD (DMP2) ,DE i AND PUT IN COMMAND.
LD C,L ;DO THE SAME WITH L.
CALL ASCII

LD (DMP2+2) ,DE

LD HL ,DMPCMD NOW POINT TO COMMAND

~ o~

Jp CMDINT AND EXECUTE IT.

** SUBROUTINES **

LD A,C s RETURNS ASCII OF C IN ED
CALL SBR1

LD D,A

LD A,C

RRCA :GET NEXT DIGIT

RRCA

RRCA

RRCA

CALL SBR1

LD E,A ;DONE WITH BOTH DIGITS.
RET

AND OFH ;CALLED BY ASCII,

OR 30H

3/33

THE ALTERNATE SOURCE

02324
02326
02328
02330
02332
02334
0233¢
02338
02340
02342
02344
02346
02348
02350
02352
02354
02356
02358
02360
02362
02364
02366
02368
02370
02372
02374
02376
02378
02380
02382
02384
02386
02388
02390
02392
02394
02396
02398
02400
02402
02404
02406
02408
02410
02412
02414
02416
02418
02420
02422
02424
02426
02428
02430

i
BONLY

MOVEUP

~

~

~e we

ASCII

i
SBR1

vol. I, No. 3

;IF ONE WAS, WL MUST SAVL
; MEM FROM 40CC TO 7FFF.

;ELSE FINI' END OF LEVEL
; II PROGRAM,

;AND GET DIFF FROM 4000
; 1IN BC.

;SAVE #BYTLS TO NMOVE

; FROM 4000+,

sWHERE PRCCG WILL BL HELD.
;SLIDE IT UP THERL.
;HAVING MOVED LEVEL II
STUFF TO SAFLYTY, BOOT
THE DOS.

;RLTRIEVE #BYTES MOVED
;PUT IN MOVEDOWN CODE
;NOW SLIDE MOVEDOWN CODE
; DOWN INTO PLACE AT

; P2ENTR+.

;CALC END ADDRESS, AND

; PUT ASCI1 IN DUMP CIMD.
;GETS END ADDRESS IN HL.
;CONVLRT H TO 2 ASCII'S

; AND PUT IN COMMAND.
;DO THE SAME WITH L.

;NOW POINT TO COMMAND
; AND EXECUTE IT.

; RETURNS ASCII OF C IN ED

;GET NEXT DIGIT

;DONE WITH BOTH DIGITS.

;CALLED BY ASCII.

LD BC, 3FFFH
JR MOVEUP
LD BC, (EPROGP)
LD A,B
SuB 40H
LL B,A
LD (TSTORE) ,BC
LD HL,BOTTOM
LD DE ,SAFLTY
LDIR
Jp PWRUP

*% ENTRY FROM DOS **
LD HL, (TSTORE)
LD (BYTNUM) ,HL
LD B, 12H
LD DE ,MVDNCD
LD HL,P2ENTR
CALL BMOVE
LD HL, (TSTORE)
DEC HL
LD DE,SAFETY
ADD HL,DE
LD C,H
CALL ASCII
LD (DMP2) ,DE
LD C,L
CALL ASCII
LD (DMP2+42) ,DE
LD HL , DMPCMD
Jp CMDINT

*% SUBROUTINES **

LD A,C
CALL SBR1
LD D,A
LD A,C
RRCA
RRCA
RRCA
RRCA
CALL SBR1
LD E,A
RET
AND OFH
OR 30H

3/34

THE ALTERNATE SOURCE Vol. I, No. 3

WHAT'S WHERL THE VARPTR POINTS

By Bill Brown

The VARPTR function in TRS-80 BASIC is a handy tool
that gives you access to the storage addresses of the
values you assign to variables in your BASIC programs.
Equipped with these addresses and the PEEK and POKE
functions, there are several interesting things you can do
to enhance the operation of the programs you write. This
article is the first of at least two articles dealing with
how you can make use of VARPTR.

Most of the wuses you will find for VARPTR in
day~to-day programming have to do with string variables.
Programs that use a 1lot of string space and do a lot of
string manipulation, frequently have 'uncomfortable' pauses
in execution while BASIC rearranges string space. This
allows it to reuse the space that is occupied by strings
that your program has abandoned when the values of string
variables are changed. What goes on in this process, how
BASIC manages string space and how you can use VARPTR to
make it more efficient all warrant an additional article
(next issue). By the end of this article, however, you
should have the basics of what You need to know to make use
of the general technique.

The core of the issue involving the use of VARPTR
deals with how the computer stores the numbers and other
information that you assign as values to variables. If you
have a string variable (A$) and you set this variable equal
to some value in the program, say

10 A$="TAS"

then the operating system of the computer (BASIC) must
store the value someplace in the computer's memory. But
more importantly, it must be able to get it back any time
you use A$ in your program, say

20 PRINT"THIS NEWSLETTER'S INITIALS ARE ";A$

To do this BASIC stores a table (list) of variable names,
and adds to this list the first time it encounters each new
variable name in the program, The variables that are
defined first in the program will be first in the list of
variable names, and ones defined last will be at the end.
Any time the program encounters a variable name it will
search the list to see if it already exists, and if not,
will add it. Actually, BASIC keeps two such lists, one for
simple variables and one for arrays, and the appropriate

3/35

THE ALTERNATE SOURCE vol. I, No. 3

WHAT'S WHERL THE VARPTR POINTS

By Bill Brown

The VARPTR function in TRS-80 BASIC is a handy tool
that gives you access to the storage addresses of the
values you assign to variables in your BASIC programs.
Equipped with these addresses and the PEEK and POKE
functions, there are several interesting things you can do
to enhance the operation of the programs you write. This
article is the first of at least two articles dealing with
how you can make use of VARPTR.

Most of the uses you will find for VARPTR in
day-to-day programming have to do with string variables.
Programs that use a lot of string space and do a lot of
string manipulation, frequently have 'uncomfortable' pauses
in execution while BASIC rearranges string space. This
allows it to reuse the space that is occupied by strings
that your program has abandoned when the values of string
variables are changed. What goes on in this process, how
BASIC manages string space and how you can use VARPTER to
make it more efficient all warrant an additional article
(next issue). By the end of this article, however, you
should have the basics of what you need to know to make use
of the general technique.

The core of the issue involving the use of VARPTR
deals with how the computer stores the numbers and other
information that you assign as values to variables. If you
have a string variable (A$) and you set this variable equal
to some value in the program, say

10 A$="TAs"

then the operating system of the computer (BASIC) must
store the value someplace in the computer's memory. But
more importantly, it must be able to get it back any time
you use A$ in your program, say

20 PRINT"THIS NEWSLETTER'S INITIALS ARE ";A$

To do this BASIC stores a table (list) of variable names,
and adds to this list the first time it encounters each new
variable name in the program. The variables that are
defined first in the program will be first in the list of
variable names, and ones defined last will be at the end.
Any time the program encounters a variable name it will
search the list to see if it already exists, and if not,
will add it. Actually, BASIC keeps two such lists, one for
simple variables and one for arrays, and the appropriate

3/36

FFe3I5 SVYL

*Nnok
posned sey STU3} SOUSTUSAUOOUT Aur I03 AII0S BI° °OM

*obed sSTU3] FO 9SIBASI 93 UO dSI® ‘¢# onssT TeurbrIo
a2y3 ut poxeadde Aeyiz se ‘gf 3 pE sobed 3091100 YL

*309IX00 JOU I ¢# SNSST JO G 3 g sobed ‘ATsueN
*B3RIID PSUTRIUOD SYL FO SUMTOA punoq ayi 3Iey3z ISA0DSTP
03 pausppes aIsm am ‘Hurtjzutad yo uoTisTdwod IIIFY

:I9sRYDINg SUMTOA punog Iead

L86L ‘8 aunp

THE ALTERNATE SOURCE Vol. I, No. 3

FROM THE SOURCE'S MOUTH

By Joni M. Kosloski

HOT RUMOR DEPT: (Maybe.) Radio Shack will be offering an
on-line subscription service (Source, Micro-Net?). Price
should be less than what's available now. If this is true,
you'd better get a modem/RS-232 now.

BUGS DEPT: Our hats off to Jack Bilinski at
80-Microcomputing Services for these tips. Early versions
of the Mumford spooler had an 'M' instead of 'N' when using
the '<left arrow>N' command. Either use the 'M' or patch
mem location ECOOH with 4oH. This has been fixed in later
versions. Thanks, Jack.

REGARDING NEWDOS~-80 ORDERS ¢ Unfortunately (and
predictably) we're still awaiting our first shipment. We
have been informed that it should be within a couple of
weeks, most likely by the time most of you read this. Some
initial questions have been asked (and answered):

1. It will be compatible with Scripsit. For
current NEWDOS+ owners, a patch is available
on the Source.

2. NEWDOS-80 will be provided in a special
wrapper. According to our source, this
wrapper will be all the receipt you need,
should an wupdate become available in the
future. Please save it!

3. Unless you have requested otherwise, we will
be shipping NEWDOS-80 by UPS on the day we
receive it.

4. Your original diskette will be returned (this
for those who are upgrading).

Thanks for your order. We hope you'll be hearing from
us soon!

TIDBIT DEPT: If you haven't already, power up DOS. Any
version, including NEWDOS. Type: ‘

BOOT/SYS .WHO
Hit return and press the "2" and "6" numeric keys while DOS
is looking for the program. You should see a very
interesting message on the screen! (Sorry, no equivalent
tidbit for Level II folks.)

May the Source be with youl!

Page 35

THE ALTERNATE SOURCE Vol. I, No. 3

02432
02434
02436
02438
02440
02442
02444
02446
02448
02450
02452
02454
02456
02458
02460
02462
02464
02466
02468
02470
02472
02474
02476
02478
02480
02482
02484
02486
02488
02490
02492
02494
02496
02498
02500
02502
02504
02506
02508
02510
02512
02514
02516
02518
02520
02522

CP 3AH
RET C
ADD A,07
RET
i
], e e e e ke e e e e e e e e e o e e e e e o e - - -
H ** MISCELLANEOUS **
; THIS IS5 THE DUMP COMMAND STRING. IT IS MODIFIED AS
;i NECESSARY BY TWODISK TO MAKILI IT PUT THE CORRECT
;i BLOCK OF MEMORY ONTO DISK. THE ONLY THING THAT EVER
i CHANGES IS THE END ADDRESS.
’
DMPCMD DEFM 'DUMP PROG2/CMD (START=X'
DEFB T
DEFM ‘8000
DEFB e
DEFM ' ,END=X"
DEFrB e
DMP2 DEFM ' XXxX'
DEFB e
DEFM ', TRA=X'
DEFB e
DEFM '8000"'
DEFB vee
DEFB 9!
DEFB ODH
i
i
;i THIS IS THE BLOCK-MOVE CODE THAT WILL GET SLID DOWN
;7 AND PREFIXED ONTO THE LEVEL II BLOCK PRIOR TO DUMPING
i THE WHOLE THING TO DISK AS PROG2/CMD.
’
MVDNCD DI ; INTERRUPTS FOUL UP LVL2.
LD BC,0000 ; #BYTES TO MOVE (LATER) .
LD DE ,BOTTOM ;START PUTTING IT HERE.
LD HL,SAFETY ;FROM WHERE IT WAS HELD.
LDIR
LD SP,4288H ;WHERE SYSTEM PUTS STACK.
JP LEVEL2 ;JUMP INTO LEVEL II,.
i
’
BYTNUM EQU MVDNCD+2
TSTORE EQU MVDNCD+18
i
P, e - -
END DCODE

KhkAAIKA KA A AR A A A A hTAh kK

WE'RE PROUD...

...to announce that there was NO ERRATA from Issue #2

to report!!

Page 34

e o . - - - VY e v

THE ALTERNATE SOURCE Vol. I, No. 3

list is searched for the wvariable that is found in the
program. (Note: The time that the computer spends
searching these lists for variable names is a significant
factor in the speed with which your program runs. It is
possible to speed up a program noticeably by making sure
that the most frequently used variables are the ones that
get defined first; i.e., are encountered first in the
course of the program's execution. It doesn't count if the
variables are mentioned at the beginning of the program,
but are jumped over in execution. The more variables that
you use in the program, the more important it will be to
define frequently used ones first, because of the increased
time to search the whole list. A simple variable can be
said to be ‘'defined' the first time it is given a value.
Array variables are 'defined' when mentioned in the DIM
statements.)

Associated with each variable name on one of these
lists is some other information that the computer uses to
handle its actual operations with that variable. One piece
of this information is the variable's type: INTEGER,
SINGLE PRECISION, DOUBLE PRECISION, STRING. Derending on
which type it is, each variable will have associated with
it some other information concerning the values of the
variables and where the values are stored in memory. BASIC
uses this information to quickly find and retrieve the
values when it is executing your program, and it is this
information that is made available to you by using the
VARPTR function in BASIC.

The description of VARPTR is given on pages 8/8 to
8/10 in the Level II BASIC Reference manual. While the
discussion that follows will not refer directly to those
pages, the intent of the article is to clarify what you
find there. You will probably find it helpful to have the
manual available as you read the remainder of the article.
One thing that may make reading those pages more easily
comprehensible is to mentally insert 'PEEK' in front of the
parenthesized expressions that you find there. For
example, when the manual states that '(K+7) = exponent of
value', what it means is that PEEK(K+7) will give you the
exponent. :

To quote the Level 'II manual, VARPTR

"Returns an address-value which will help you locate where
the variable name and it's value are stored in memory."

All of the discussion that follows that in the manual
is concerned with where the value is stored, and I can find
no reference to information that would let me determine
where the name of the variable is stored. Whatever the

3/37

THE ALTERNATE SOURCE Vol. I, No. 3

case, it is the values with which we will be mainly
concerned here. (There is a tip on Page 5 which indicates
how you use VARPTR to locate the storage of the name and
variable type.)

The VARPTR function is used by specifying a variable
name enclosed in parentheses following the function name,
e.g.,

40 X=VARPTR(AS$)

will cause X to be set to an address-value 'which will help
you locate where' the value of A$ is stored in memory.
Essentially, what you get from VARPTR (VARiable PoinTeR) is
a pointer to the memory location, from which you can PEEK
the information that is stored about the variable. The
variable that is the argument for the function does not
have to be a string variable, as used in the example. It
can be any variable type. It can also be a subscripted
variable; using VARPTR(A$(1)) will yield a different value
than VARPTR(A$(2)). How you make use of the address-value
that is returned by the function is different for each
variable type, but is the same (or very similar) for
subscripted and non-subscripted variables of the same type.
In all cases, the address-value is a 'pointer' to a memory
location. This memory location contains part of the
variable's value, or other information about how memory
addresses and numeric values are stored in the TRS-80
memory.

The Z-80 microprocessor that serves as the CPU for the
TRS-80 can access (for reading or writing) 65535 bytes of
memory (64K). This means that in order to address any
given byte in memory, we must be able to store and use
numbers as large as 65535. (Actually, this 1is not quite
accurate; the discrepancy will be cleared up later.) To
store a number this large requires two (2) bytes of memory,
which means that all memory address-values are stored as
2-byte integers. The value returned by the VARPTR function
is such a number; it is not the value of the variable, nor
any other direct information about the variable--it is
simply a memory address—-value that points to where the
information we want is stored. Actually, it points to the
first byte in memory that contains the information we want.
For all variable types, there are other bytes of
information that immediately follow the one pointed to:
for integer variables there are four (4), for double
precision there are eight (8) and for string variables
there are three (3). The 2, 4 and 8 bytes of information
for the numeric variables contain the value of the
variable. The string variables are a completely different
story, and we will get to them a little later. For now,

3/38

THE ALTERNATE SOURCE Vol. I, No. 3

let's take an integer variable as an exarple and see how we
can use VARPTR to access its value. This requires another
little side trip to get some more background.

Recall that the values of integer variables are stored
in two bytes of memory. The first of these is the one
pointed to by the value that is returned by VARPTR. If our
integer variable is N, then we can get the pointer and
store it in the variable X with the following statement:

50 X=VARPTR(N)

Now we can use PEEK(X) to get one byte of the integer N,
and we «can use PEEK(X+1) to get the other byte. The
question then is how to put these two bytes together to get
the value of N.

A quick review of some basic arithmetic: If we had
the number 2317 stored in memory so that the '23' is in one
byte and the '17' 4is in the other (this is not how it is
actually done, just an example leading to something else),
and we PEEKed each byte individually so that R=23 and s=17,
then we could put them together to get the whole value by

N = R¥100 + S = 2300 + 17 = 2317

One way to look at this example is that the two bytes
we PELK are each a 'digit' and the '17' another (in this
base 'digits' range between 00 and 99). To reconstruct the
whole number above we have multiplied by 100 (actually, 100
to the first power) because we are working with base 100
digits, and because we need to shift the digit '23' over
'one place' before we do the add. In this simple example,
we can refer to the digit '23' as the 'most significant
digit' and the digit '17' as the 'least significant digit'.
The most significant digit is the one that gets multiplied.

We must do something similar to this when we use the
two bytes we get by PEEKing the memory locations pointed to
by VARPTR to construct our integer N, except that we
multiply by 256. This is because the bytes we get when we
PEEK are numbers that could be thought of as base 256
'digits' that are each stored in one byte of memory (the
range for a 'digit' is 000 - 255), We shift the 'most
significant byte' (MSB) over ‘one place' by multiplying it
py 256, then we add the 'leastA significant byte' (LSB),
i.e.,

N = MSB * 256 + LSB

The kink in the process and the factor that causes
confusion is that the 2-80 stores numbers with the LSB

3/39

THE ALTERNATE SOURCE Vol. I, No. 3

preceding the MSB. This would be analogous to storing our
2317 number with the 17 first, followed by the 23. Most of
the time when we are programming in BASIC, the computer
takes care of this 'back byting' for us and we don't need
to know about it. But when we want to PEEK information out
of memory and make use of it, it is necessary that we keep
this in mnind.

What this boils down to is that in order to
reconstruct the whole number that we PEEK from memory, we
must reverse the order of the digits. For variable N, with
X=VARPTR(N) , PEEK(X) is the LSB and PEEK(X+1) is the MSB:

N = PEEK(X+1) * 256 + PEEK(X)

To reconstruct single precision and deulle precision
values is more complex than this because there are more
bytes to be PEEKed and multiplied by powers of 256, and
there is an exponent to be dealt with. We will not go into
this any further here. One parting note on this example,
if we want to set variabel Q equal to variable N, we can do
this in one statement:

60 Q=PEEK(VARPTR(N)+1)*256 + PEEK(VARPTR(N))
or equivalently by
65 Q=N

As you might imagine, there is not a lot of traffic in
numeric variables reconstructed from PEEKs of separate
bytes in memory.

The reason for going into this at such great length is
that in order to get at the values of string variables
using VARPTR, we must construct an integer address of the
storage location for the string value.

As noted above, VARPTR of a string variable points to
the first three (3) bytes that give us information about
the string variable. The first of these is one byte that
contains the length of the string (remember that the length
of a string can be a maximum of 255, the largest number
that can be stored in one byte). The two bytes that follow
contain the LSB and the MSB, respectively, of the
address-value of where the first character of the string is
actually stored in memory. If A$="TAS", then
PEEK (VARPTR(A$)) =3, the length of the string. To get the
address of the string storage for A$ and store it in
variable X, we can specify

70 X = PEEK(VARPTR(A$)+2) * 256 + PEEK(VARPTR(AS$)+1)

3/40

THE ALTERNATE SOURCE Vol. I, No. 3

Almost!

Here is where we encounter another one of those
wrinkles that needs to be explained. While it is possible
to store an integer as large as 65535 in two bytes of
memory, BASIC only allows integers in the range of -327€8
to +32767. That is, one bit in the MSD is reserved for the
sign of the number. This also applies to address-values,
since they are stored as integers, and are assumed to be
integers when used with PEEKs and POKEs. How then do we
address 65535 bytes of memory, or access any memcry address
above 327672 We wuse the negative numbers. To PEEK the
byte that is one memory location above 32767 we use
PEEK(-32768), for one above that we use PEEK(-32767), and
for the top byte of 65535 bytes we wuse PEEK(-1). Simple
but complex.

When we are calculating addresses, as in statement 70
immediately above, the most straightforward way to approach
it is as follows:

1. Make sure that the variable that will hold the result
(in this case, X) is a single precision variable (if you
use an integer variable you will get an overflow error when
the result is larger than 32767).

2. However, if you try to PEEK or POKE an address with a
single precision variable with a value greater than 32767,
you will also get an overflow. To make sure that X in
statement 70 is an appropriate value, modify the statement
as follows:

70 X=PEEK(VARPTR(A$)+2) * 256 + PEEK(VARPTR(AS$) +1) :
IF X > 32767 THEN X=X-65535

With that in hand,

CHR$ (PEEK(X))="T"
CHR$ (PEEK(X+1))="a"
CHR$ (PEEK (X+2)) ="g"

Note: The PEEK of the character value returns the ASCII
code for that character. To get its character
representation we have to use the CHR$ function.

As the dust settles around the oasis at sunset, let's
pull one more rug out from under the camel. The
application mentioned at the beginning of the article that
dealt with using VARPTR to optimize the use of string space
doesn't really need to deal with the particular values of
strings at all. As long as you are programming in BASIC,
most of the manipulations of the string values can be taken

3/41

THE ALTERNATE SOURCE Vol. I, No. 3

Almost!

Here is where we encounter another one of those
wrinkles that needs to be explained. While it is possible
to store an integer as large as 65535 in two bytes of
memory, BASIC only allows integers in the range of -327€8
to +32767. That is, one bit in the MSD is reserved for the
sign of the number. This also applies to address-values,
since they are stored as integers, and are assumed to be
integers when wused with PEEKs and POKEs. How then do we
address 65535 bytes of memory, Or access any memory address
above 327672 We use the negative numbers. To PEEK the
byte that is one memory location above 32767 we use
PEEK(-32768), for one above that we use PEEK(-32767), and
for the top byte of 65535 bytes we use PEEK(-1). Simple
but complex.

When we are calculating addresses, as in statement 70
immediately above, the most straightforward way to approach
it is as follows:

1. Make sure that the variable that will hold the result
(in this case, X) is a single precision variable (if you
use an integer variable you will get an overflow error when
the result is larger than 32767).

2. However, if you try to PEEK or POKE an address with a
single precision variable with a value greater than 32767,
you will also get an overflow. To make sure that X in
statement 70 is an appropriate value, modify the statement
as follows:

70 X=PEEK(VARPTR(A$)+2) * 256 + PEEK(VARPTR(A$)+1) :
IF X > 32767 THEN X=X-65535

With that in hand,

CHR$ (PEEK(X)) ="T"
CHR$ (PEEK(X+1))="A"
CHR$ (PEEK (X+2)) ="8"

Note: The PEEK of the character value returns the ASCII
code for that character. To get its character
representation we have to use the CHR$ function.

As the dust settles around the oasis at sunset, let's
pull one more rug out from under the camel. The
application mentioned at the beginning of the article that
dealt with using VARPTR to optimize the use of string space
doesn't really need to deal with the particular values of
strings at all. As long as you are programming in BASIC,
most of the manipulations of the string values can be taken

3/42

THE ALTERNATE SOURCE Vol. I, No. 3

care of more efficiently with the string functions that are
available in BASIC.

Without going into a lot of detail here that will be
covered in the next article, the optimization comes from
reducing the number of string values that are abandoned
when the values of two string variables, or the values of
two elements of a string array , are interchanged. When the
values of any two variables are interchanged it is
necessary to temporarily store one of the values in a third
variable, copy the second to the first, then move the
temporary value to the second variable. When this is done
repeatedly with string variables, there accumulates a trail
of 'dead strings' that were at one time temporary values;
the inefficiencies come from BASTC having to go around
cleaning up the mess. BASIC finds and uses string values
by using the location of the value and the length of the
string that you can get via VARPTR. This information is
all that BASIC has to go on when it needs to find out what
the value of a string is, or if a string variable has any
value at all. If you change these three Lytes of
information, and do it properly to point to another string,
BASIC will never know that it did not put them there.

If we have two string variables, A$ and B$, for which
we want to interchange their values, then we can PEEK the
three bytes for one and save them temporarily as integer
values, e.g.,

100 T1=PEEK(VARPTR(A$)) : T2=PEEK(VARPTR(A$)+1) :
T3=PEEK (VARPTR(A$) +2)

Then copy the appropriate values for B$ into A%, e.g.,

110 POKE VARPTR(AS$) , PEEK(VARPTR(BS)) :
POKE VARPTR(A$)+1, PEEK(VARPTR(B$)+1) :
POKE VARPTR(A$)+2, PEEK(VARPTR(BS$) +2)

Then copy the temporaries into B$, e.g.,

120 POKE VARPTR(B$) ,T1: POKE VARPTR(B$) +1,T2:
POKE VARPTR(B$)+2,T3

Clearly this takes a lot more code than copying the
strings directly. The article in the next issue will
discuss this in more detail, including situations where you
might find it a valuable technique and some examples that
reduce a job of several minutes to less than a minute by
applying methods no more complicated than those just
outlined.

3/42

hiinti B

THE ALTERNATE SOURCE Vol. I, No. 3

LAST MINUTE ODDS & ENDS

TAS now has daily pick-up from UPS. Those who do not
have UPS delivery in their area should state that fact when
placing orders.

TAS now has another phone 1line for more effective
communication: area code 517, phone 485-0344. 487-3358 is
the original number, feel free to continue to use it, also.

Caution to Copydisk users: CD does not update the EOF
marker properly when booted from NEWDOS . A patch 1is
forthcoming.

A disk ($7.50) or cassette ($5.00) of this issue 1is
available from TAS, as well as previous issues and
forthcoming issues.

Microdos (see review, page 25) is also available from
TAS. $29.95 on diskette with manual.

Stan Ockers has suggested we continue to upgrade ISAR,
sort of on a group basis. The tools are there for both
ease of wuse and programming is accessible for ease of
modification. We've had many suggestions that have not
been implemented yet. A new bug was uncovered when sorting
on a double precision numeric field. Apologies to a
gentleman in West Virginia who first pointed this out. He
received an updated version, but it did not include this
correction. We will publish it in the next BTI (Between
The Issues, see page 2). Any modifications you care to
suggest will also be included in future BTIs. I think
Stan's ideal is to have an all-encompassing program for
minimal cost. With that in mind, how can we refuse? A
module 10 is about half finished. Upon completion, you may
request a printed listing with a SASE (not yet!). 1It's
going to be a 'Catch-All' to allow some requests to be
implemented.

Mr. Andrews, please keep the faith, We haven't
forgotten.

And last but not 1least: Radio Shack is coming out
with a TRS-80 Applications Software Sourcebook which will
list existing software for the TRS~80, both Model I and
Model II. The Sourcebook will provide you with titles,
descriptions, authors and prices. It won't,. however,
include any %80 assembly language programs. Hmmm....

And with that thought, we'll leave you until next
issue, scheduled to be mailed on or before June 20, 1980.

Page 43

AFTERWARD FOR ISSUE 3

Sometimes my enthusiasm gets in the way of my common sense.
Volume 11 of The Disassembled Handbook arrived prior to this issue. On
page 3/10 is the statement “No duplication from Volume 1”, which caused
me some regrets.

Two very significant appearances this issue: Dennis Kitsz reappears
and continues with us consecutively through issue number 8. A new (our
only) column called “80-Aids” makes its debut. Next issue, the title
changes to ”Bit Wits”, and finally in issue 5 to ”Bit Kickin’ With Jesse
Bob”.

Would you believe there are people who don’t think there really IS a
Tesse Bob Overholt?

TWO DOLLARS VOLUME 1, NUMBER 4

THE
ALTERNATE
SOURCE

THE MAGAZINE OF ADVANCED APPLICATIONS
AND SOFTWARE FOR THE TRS-80.

IN THIS ISSUE:

PAGE
POWER UP 3
IN-MEMORY SORTINGUSING GSF 10
KILLER ... 15
TEACH YOURTRS-80 TO TALK 24
BIT WITS 26
COMPUTING ELAPSED TIME 3
SUPERZAP PATCHES 33
DIRECT STATEMENT INFILE 34
MENUPOWER ... 38
BOOT/SYS. WHO EXPLAINED 40
VARPTRo 41
LINESET ... 49

Regular Features:
Editorial RAMbling — 2, Bulletin Board — 29, Survey — 32,
From the Source’s Mouth — 36, Odds & Ends — 51

TRS-80 IS A TRADEMARK OF THE TANDY CORPORATION.

THE ALTERNATE SOURCE vol. I, No. 4

Editorial RAMbling...

Charley Butler

We welcome all the newcomers to TAS. Lots of goodies
packed here for helping make your TRS-80 a more reliable
system. We also have several new authors, some starting
this issue and some next. Don't forget to vote for your
favorite. There is still a limited amount of time to get
votes in for last issue, but hurry! As of next issue, we
will have at least three authors who will appear full tine
(every issue) and promises from a couple more. We hold .to
one of our original premises that authors are the most
important asset to any publication and have excellent
intentions along this line. Our rates are still modest, but
we welcome your inquiries. If you have an article you would
like published, right now you would do very well to submit
it to The Alternate Source. Joni or myself would be
delighted to discuss your plans for writing. Rates have
just moved from the maximum amount we could afford to
"flexible'. Each article will be evaluated on an individual
basis. We have received some inquiries about regular
columns. Our current attitude is that we welcome the
prospect. Formats are not to be fixed; that is, we would
appreciate commentaries and elaborations on a variety of
subjects. That can keep both the authors and readers
exposed to a wide variety of subjects.

The most-appreciated Allan Moluf pointed out some time
ago that much of the inferior software that has been hitting
the market for some time now is due to the lack of exposure
to professional techniques for the some half-million 'new’
programmers that entered the marketplace in the last few
years. Naturally we are only counting those who deal with
the TRS-80. We are currently concentrating on
'unmystifying' some of the more elaborage techniques in
business, science and education. More in the next BTI.

There seems to be a lot of exciting software hitting
the market in the next couple months with the Microsoft
Compiler (9% for use-rights or $195. per year) and Newdos-80
(I'm writing this on Monday, June 2) and several other fine
programs. We'll try and keep you informed on the y hs and
bahs of all. Ken Edw &ds (see 'Direct Statement' article in
this issue) has started calling Newdos-80 Newdos-2001. He
ordered it last March.

We appreciate and welcome your comments and support.
The Alternate Source is published bi-monthly by Charley
Butler and Joni Kosloski at 1806 Ada Street, Lansing, MI
48910.

PAGE 2

THE ALTERNATE SOURCE Vol. I, No. 4

WHEN YOU TURN IT ON
THE POWER-UP ROUTINES OF THE TRS-80
By Dennis Bathory Kitsz

(Part Two)

Last 1issue we found out about the initialization
routines of the TRS-80 assuming that a disc drive and
expansion interface are connected to the system. Here's a
quick review of that activity:

Interrupts are disabled, cassette is turned off and
data are cleared from that output, video is restored to
normal, and significant pointers for BASIC Program operation
are set up. A disc drive is searched for, and if one is
found, a group of procedures are initiated in order to
transfer control of the TRS-80 to these disc instructions.

A series of control signals and acknowledgments are
exchanged between the floppy disc controller and the CPU, a
page (256 bytes) of data are poured into a RAM buffer area,
and program control is given over to this new series of
commands.

If a disc drive is not found, or if the break key is
held down during power-up, control is transferred to address
0075H. At this point it should be noted that the "reset"
button on the TRS-80 is a non-maskable interrupt, that is,
the only interrupt which the DI (Disable Interrupt) cormmand
first executed by the TRS-80 cannot mask out. When pressed,
the reset button goes directly to address 0066H, following a
much shorter series of instructions reminiscent of the
power-up routine.

Because it is likely most important RAM pointers are
still intact, this sequence does not reset them:

7

0066 00010 ORG 0066H
0066 310006 00020 LD SP,0600H
0069 3AEC37 00030 LD A, (37ECH)
006C 3C 00040 INC A

006D FE02 00050 cp 02

006F D20000 00060 Jp NC, 0000
0072 c3ccoe 00070 Jp 06CCH

7

This group of instructions sets up the stack pointer,
checks for the presence of a disc drive, and jumps to the

4/3

THE ALTERNATE SOURCE Vvol. I, No. 4

complete initialization routine ("reboot") if it finds one.
If none is present, it goes to the "READY" sequence
beginning at address 06CCH.

Now let us return to the initialization program flow we
have been following, which is found at 0075H:

0075 00080 ORG 0075H

0075 118040 00090 LD DE,4080H
0078 21F718 00100 LD HL,18F7H
007B 012700 00110 LD BC,0027H

007E EDBO 00120 LDIR

’

Using the LDIR instruction described in the first part
of this article, a block of information located at 18F7H is
transferred to RAM beginning at 4080H. These bytes describe
ports in use, error storage, INKEY$ information, and so
forth, as needed in the general operation of Level II BASIC.

A few specific addresses are delineated:

1

008C 21E541 00130 LD HL,41E5H
0083 363A 00140 LD (HL) ,3AH
0085 23 00150 INC HL

oog8e 70 00160 LD (HL.) ,B
0087 23 00170 INC HL

0088 362C 00180 LD (HL) ,2CH
008A 23 00190 INC HL

008B 22A740 00200 LD (40A7) ,HL

’

Next, more RAM bytes are prepared; these jump to the
familiar "?L3 ERROR" message because they are disc commands
not available to Level II BASIC. The result of the
following program statements is to fill addresses 4152H to
41A5H with the direction "JUMP TO 012DH":

008E 112DO01 00210 LD DE,012DH
0091 061C 00220 LD B,1CH
0093 215241 00230 LD HL,4152H
0096 36C3 00240 LD (HL) ,0C3H
0098 23 00250 INC HL

0099 73 00260 LD (HL) ,E
009Aa 23 00270 INC HL

009B 72 00280 LD (HL) ,D
009C 23 00290 INC HL

009D 10F7 00300 DINZ $-7

’

4/4

THE ALTERNATE SOURCE Vol. I, No. 4

Another group of ROM "breakout" points follows; these
all become returns to the main program flow. But notice
something interesting about them - three bytes are set
aside, but only one is filled with the return instruction
(C9). This means, of course, that a jump command could be
placed there. Let's first look at the series of
instructions, then examine the possible benefits of their
alterability:

i
009F 0615 00310 LD B,15H

00A1 36C9 00320 LD (HL) ,0C9H
00a3 23 00330 INC HL
00A4 23 00340 INC HL
00A5 23 00350 INC HL
00a6 10F9 00360 DJINZ $-5

.
’

If we wanted to break into the BASIC operating system,
this area of RAM is one place in which we could effect this
action. Most of these are error codes of one kind or
another. We could "rescue" a program from displaying an
error message and halting by patching in one of our own
routines. If our routine were 1located at 5000H, for
example, the C9 instruction (followed by two unused bytes)
could be replaced with a "JUMP TO 5000H" command, which
needs all three bytes: C3 00 50. Essentially, the authors
of Level II BASIC provided many areas of expansion.

Now let's move on. BASIC programs begin at address
42E9H. A pointer to that beginning is found as a zero at
address 42E8H. The next instruction sets that in place:

.

00A8 21E842 00370 LD HL,42E8H
00AB 70 00380 LD (HL) ,B

’

The stack pointer is delineated, and a call is made to
1B8FH, a subroutine to turn off or reset various devices,
including the printer and cassette player. It is in part
redundant, but a double-check is often worthwhile.

i
00AC 31F841 00390 LD SP,41F8H

00AF CDSF1B 00400 CALL 1B8FH
00B2 CDC901 00410 CALL 01C9H

.
’

The call to 01C9H results in the screen being cleared

and the cursor being placed at position 0,0. Not yet have
we seen "MEMORY SIZE?",. Well, here it is:

4/5

THE ALTERNATE SOURCE Vol. I, No. 4

00B5 210501 00420 LD HL,0105H
00B8 CDA728 00430 CALL 28A7H
00BB CDB31B 00440 CALL 1BB3H

.
4

At address 0105H is a block of ASCII bytes which spell
out "MEMORY SIZE". The subroutine starting at 28A7H
displays a string of data at the present location of the
cursor, a byte at a time, until finding a byte whose value
is 00. That terminates the display and advances the cursor.
The call to 1BB3 is identical to the BASIC "INPUT" command,
in that it displays the question mark and cursor, and halts
for keyboard input.

If that keyboard input is a <BREAK>, a carry is
generated, and the program skips b &k to "MEMORY SIZE" and
displays it again, waiting for keyboard input. The
instruction RST 10 (RESTART AT 0010H) follows, which is the
guick way of calling a routine to locate the first character
of an input. If one is found, the result of an "OR"
instruction will not be zero. Here are the instructions
that perform those functions:

’

00BE 38F5 00450 JR c,$-9
ooco D7 00460 RST 10H
00c1 B7 00470 OR A

o0c2 2012 00480 JR NZ,$+20

’

What if, on the other hand, there was no entry other
than <ENTER>? You have no doubt noticed a slight pause in
the action when you do not specifically set the memory size.
Let's have a look at that code:

00C4 214C43 00490 LD HL,434CH
00C7 23 00500 INC HL

00Cc8 7C 00510 LD AH
00C9 BS5 00520 OR L

00CcA 281B 00530 JR 7,$+1DH
00cC 7E 00540 LD A, (HL)
00CD 47 00550 - LD B,A
00CE 2F 00560 CPL

00CF 77 00570 LD (HL) ,A
00D0 BE 00580 cp (HL)
00D1 70 00590 LD (HL) ,B
00D2 28F3 00600 JR Z,$-0BH

00oDp4 1811 00610 JR $+13H

’

4/6

THE ALTERNATE SOURCE Vol. I, No. 4

For the moment we will start at the instruction LD
A,(HL). HL contains the address of a byte of RAM memory,
the contents of which are placed in the accumulator. From
the accumulator, they are also saved in the B register. The
accumulator is complemented, which inverts all the 1's to
0's and all the 0's to 1's. This complemented value is then
placed in the memory location still specified by HL. The
accumulator is compared with what has been placed in HL.

What, you ask? But this value was just placed in
memory -~ why compare it? Because - and this is a very
elegant piece of writing - if it does not compare :

1. The memory location is bad and only the block
of memory below it should be used to be safe;
- or -
2. This is the end of memory.

If this is good memory, then, the test for zero passes, the
contents saved in register B are returned to memory, and the
program loops back, incrementing HL to the next potential
memory location.

We did skip a few instructions back there. They become
important only after the first loop is complete. These
commands "OR" the contents of H and L; when the result is
zZero, we are at address 0000 - full memory has been found,
and the test is complete.

Here's what we would find, alternatively, if we entered
some value (or other characters) in response to "MEMORY
SIZE?":

’

00Dé CD5A1E 00620 . CALL 1ES5AH
00D9 B7 00630 OR A

00DA C29719 00640 Jp NZ,1997H
00DD EB 00650 EX DE,HL
O0DE 2B 00660 DEC HL

O00DF 3E8F 00670 LD A,8FH
00E1 46 00680 LD B, (HL)
00E2 77 00690 LD (HL) ,A
00E3 BE 00700 cp (HL)
00E4 70 00710 LD (HL) ,B
00E5 20CE 00720 JR NZ,$-30H

’

The call to 1E5AH checks for numeric input, and Jjumps
to 1997H (?SN ERROR) if it is not. If the input is properly
numeric, then registers DE and HL are exchanged; this action
puts DE (left off at the lowest usable memory location above
pre-set RAM needed by BASIC) in HL, where it can be

4/7

THE ALTERNATE SOURCE Vol. I, No. 4

manipulated conveniently.

Memory size minus one is usable; memory size and above
is protected. So HL is decremented before being tested,
then it 1is tested (in a manner similar, but not identical,
to that done earlier). If the memory test fails, it's back
to displaying "MEMORY SIZE?" again.

We're not quite there yet, however, as the figure
entered for memory size may be too small. BASIC needs a bit
of room to work with, so DE is set to 4414H, and the
subtraction subroutine at RST 18H is called. If a carry is
generated, we're shipped off to the "?0M ERROR" message
found at address 197AH. Here's what it all looks like:

i
00E7 2B 00730 DEC HL

00E8 111444 00740 LD DE,4414H
00EB DF 00750 RST 18H

00EC DA7A19 00760 Jp C,197AH

’

A 1little more work is left to do. Recall that a value
for available string space is set aside, and it is 50 bytes.
Here is how it is done:

00EF 11CEFF 00770 LD DE, 0FFCEH

00F2 22B140 00780 LD (40B1H) ,HL
00F5 19 00790 ADD HL,DE

00F6 22A040 00800 LD (40A0H) ,HL

'

Register pair DE is set up with OFFCEH, which, 1if you
are not yet weary of manipulation of hex numbers, is the
two's complement of 50 decimal. That is, when OFFCE is
added to 0000, the result is FFCE hex , or 50 decimal less
that the original figure. Try it to see that it works.
This bit of code, then, saves the value for top of available
memory in 40B1H, adds register DE to it, and saves that
result (memory size minus 50 bytes for string space) in
address 40AOH.

There follows:

i
00F9 CD4D1B 00810 CALL 1B4DH

’

Here let me guote Roger Fuller, whose TRS-80 Supermap
identifies this subroutine this way:

4/8

THE ALTERNATE SOURCE Vol. I, No. 4

Revelation 21:5
"And behold...he shall make all things new".

This subroutine identifies and sets up all pointers
necessary for the start of a BASIC program: variables
reset, previous programs deleted, etc.

And now, the moment you've all been waiting for! Here
it is:
i
00FC 211101 00820 LD HL,0111H
O0FF CDA728 00830 CALL 28A7H
0102 C3191A 00840 Jp 1A19H

’

The call to 28A7H, you may recall, displays a string of
ASCII characters. The string displayed in this case is...

RADIO SHACK LEVEL II BASIC

The final instruction is a jump to 1A19H, the address of the
"READY" display.

To summarize this last portion of the initialization
routine:

All the BASIC pointers, disc error codes, and ROM
return codes are set up, the screen is cleared,
and the "MEMORY SIZE" prompt is displayed. A
valid response to that question is accepted, and,
if necessary, the entire bank of memory is tested.
Error messages are generated as needed. Finally,
the memory size and available room for strings is
recorded, the "READY" prompt is displayed, and
control of the TRS-80 is given to the user.

In a future issude of "The Alternate Source", some of
the myriad uses of this initialization process will be
examined, as well as the options for making devilish changes
after the process is complete.

COPYRIGHT (C) 1979 BY DENNIS BATHORY KITSZ, ROXBURY, VERMONT
05669. ALL RIGHTS RESERVED.

i
0é6cc 00850 END 06CCH

’

4/9

THE ALTERNATE SOURCE Vol. I, No. 4

IN-MEMORY SORTING USING GSF

By Ron Johnston

One of the most powerful attributes of a computer is
the ability to store information, sort the information, and
generate specialized outputs. Unfortunately , sorting in
BASIC is slow, particularly for large data files, and also,
a new sort subroutine must be written for each sort
variation desired. This article describes the basics of
sorting and illustrates a simple solution to the problems of
speed and flexibiltity desired for sorting with the S-80
using one of the RACET computes programs, GSF.

SORTING ~ IN GENERAL

What is a computer sort and how is it implemented?
Sorting in a computer is accomplished on data in array(s).
The data is first entered into the array(s). This can be
accomplished a number of ways =-- through READ and DATA
statements, through INPUT statements from the keyboard, or
through INPUT# statements from tape or disk files. Data is
entered in arrays in 'elements' - one element for each item
of data. The elements typically start at 0 or 1 and data is
entered in consecutive elements until all data is included.
The location where the data is stored is defined by element
(or index) number. The sort subroutine rearranges the data
within the arrays. Then the sorted information may be
displayed on the screen, printed on a printer, or saved in
sorted order on tape or disk.

HOW IS DATA SORTED?

In most sort subroutines, data is sorted in one of two
ways depending on the data type. If the data is in a
numeric array, data is sorted in numerical order - if data
is in a character string array, the elements are sorted in
their 'ASCII' order (including spaces and non-printable
characters) left to right. Numbers won't sort as expected
if in character string arrays unless they are very carefully
defined in format (-13.9 is greater than 132909 in ASCII!!).
Both numeric and character string arrays may be sorted in
ascending or descending format. Ascending is from most
negative to most positive for numeric arrays; ASCII
'alphabetized' for string arrays. Descending sorts are for
most positive to negative for numeric arrays, reverse
alphabetized for string arrays.

WHAT ARE SORT KEYS -~ PRIMARY, SECONDARY, ET AL?

Sort 'keys' are a way of defining a more complex

4/10

THE ALTERNATE SOQURCE Vol. I, No. 4

sorting arrangement. The 'primary' sort key is the most
important or main way you want it sorted. An example on a
mailing list might be primary sort on ZIP code, descending
(I live on the west coast). The secondary sort key is how
you want the data arranged within the sort following the
primary sort. In a mail list example, you might want a
secondary sort key of last name (ascending) alphabetical.
The example combination will give you a ZIP code list with
the list of names alphabetized within each ZIP code (the
names for ZIP 92665 would all be alphabetical - A to 2 - and
for 2IP 92664 would start over again alphabetical A to 2).
A tertiary sort key might be included for first name -~
giving you a ‘'three' key sort. What happens if you have
more arrays than 'ZIP', last name, and first name? You '
must 'hold them together' with the original data or the
information will become scrambled. In other words, when you
define your sort keys, you must also define which other
arrays have data which must be kept with the sort keys to
hold all the information together.

AN EXAMPLE:

An actual example of a general sort application
follows. The example chosen is for a record library,
however, with a few changes, this same program can be used
for any number of applictions where it is desirable to 1look

at data in different ways - inventory lists, menus,
classroom grades, sports league results., With a little
thought, the applications are nearly endless. The example

program is not intended to be an example of consummate
programming skills, but is rather intended to provide an
easy-to~follow method of building such a program and to
illustrate the simplicity of wusing the GSF sorts. The
example is designed to run on a 16K Level II (or larger)
TRS. If you are a sophisticated ‘'disk system wuser', you
would, of course, use disk files and other more
sophisticated pProgramming techniques. You would also
include a 'DEFUSR' statement in your first line of code to
access the GSF routines. The actual sample is courtesy of
my son, Chris (the 'C' in RACET).

100 REMARK ************************x******’L7'\3: MEE SRR T X

110 REMARK ** *x
120 REMARK *%* GSF SORT EXAMPLE. BASED ON SIMPLE * %
130 REMARK ** LP RECORD FILE. USES GSF SORT #17. **x
140 REMARK ** 2 FEB 80. RACET COMPUTES. *x
150 REMARK ** **

T60 REMARK *rahkkhk ok kA kAR Ak A kAR Rk h ke ok kk ok Ak h Ak kA A AR R A & o o s o
170 REMARK

160 CLEAR (MEM-2000)

190 MAX=20 :MAX=MAX+2

<Listing continued on next page . . .>

4/11

THE

ALTERNATE SOURCE Vol.

200 DIM R(MAX) ,C$(MAX) ,A$ (MAX) ,S$ (MAX)

210 FOR I=1 TO MAX-2

220 READ R(I),C$(I),A$(I),S$(I)

230 IF R(I)=-999 THEN I=I-1 : GOTO 250

240 NEXT I

250 CLS

260 PRINT "MENU:"

270 PRINT "1) SORT BY RECORD NUMBER"
280 PRINT "2) SORT BY COMPOSER"

290 PRINT "3) SORT BY ALBUM TITLE"
300 PRINT "4) SORT BY SONG TITLE"
310 PRINT "5) DISPLAY LIST"

320 PRINT

330 INPUT "ENTER OPTION NUMBER ";O%

340 IF 0%<1 OR 0%>5 THEN 330

350 ON 0% GOTO 500 ,1000,1500,2000,2500
500 REMARK SORT BY RECORD NUMBER
510 SV$="+R,S$,A$,C$"

520 GOTO 4000

1000 REMARK SORT BY COMPOSER.

1010 Sv$="+C$,+5%,R,A$

1020 GOTO 4000

1500 REMARK SORT BY ALBUM TITLE (GROUP)
1510 SV$="+A$,+S$,R,C$"

1520 GOTO 4000

2000 REMARK SORT BY SONG TITLE
2010 SV$="+S$,+R,C$,A$"

2020 GOTO 4000

2500 REMARK DISPLAY SECTION.
2510 FOR C=1 TO I

2520 PRINT "ENTRY #";C

2530 PRINT "RECORD #",R(C)

2540 PRINT "COMPOSER “,C$(C)

2550 PRINT "ALBUM TITLE",A$(C)

2560 PRINT "SONG TITLE ",S$(C)

2570 PRINT

2580

2590 NEXT C

2600 INPUT "END OF LIST. <ENTER> TO CONTINUE.";A
2610 GOTO 250

4000 REMARK SORTING ROUTINE.

4010

4020 IF K=0 THEN PRINT "SORT COMPLETE." : GOTO 4090
4030 ON K GOTO 4040 , 4050 , 4060 , 4070 , 4080
4040 PRINT "NULL STRING IN 'Sv$'" : GOTO 4090

4050 PRINT "MISSING VARIABLE IN 'SV$'" : GOTO 4090
4060 PRINT "ARRAY SPECIFIED NOT FOUND." : GOTO 4090

4070 PRINT "ARRAY FOUND NOT SINGLY DIMENSIONED." :
4080 PRINT "ARRAY FOUND TOO SMALL." : GOTO 4090
4090 PRINT

4100 INPUT "PRESS <ENTER> WHEN READY.";A
4110 GOTO 250

I, No, 4

PRINT : INPUT"PRESS <ENTER> TO SEE NEXT ENTRY";A:PRINT

K=USR(17) OR USR(VARPTR(SV$)) OR USR(1) OR USR(I)

GOTO 4090

Continued--->

4/12

THE ALTERNATE SOURCE Vol. I, No. 4

5000 STOP
9000 REMARK DATA GOES AFTER HERE...
9010 DATA 1,TOTO,HYDRA,NINTEY NINE

9020 DATA 3,BEETHOVEN,THE NINE SYMPHONIES,DA DA DA DUM
9030 DATA 6,EAGLES,LONG RUN,THOSE SHOES

9040 DATA 2,SYNERGY ,SEQUENCER,CHATEAU

9050 DATA 7,ELO,BEST OF,TELEPHONE LINE

9060 DATA 4,BACH,VIOLIN CONCERTO,HEIFITZ

9070 DATA 5,FLEETWOOD MAC,TUSK,TELL ME YOU LOVE ME
9999 DATA -999,THIS IS,THE,END

10000 END

PROGRAM EXPLANATION
Line 180 clears sufficient string space for variables.

Lines 190 and 200 set the dimensions (maximum number of
elements allowed per array). When using GSF, the arrays
must be dimensioned to two greater than the maximum number
of elements.)

Lines 210 - 240 read the data in the data statements. Data
statements are handy because they are easy to edit.

Lines 250 - 340 display the menu.

Line 350 uses a computed GOTO to provide the setup for the
desired sort.

Line groups 500, 1000, 1500, and 2000 are identical except
for the contents of SV§. SV$ defines the way that the data
is to be sorted when using GSF (any string variable name may
be used in place of SV§).

Line 510 establishes a sort by record number, keeping the
'composer’, ‘'album title', and 'song title' data together
with the record number. The '+A$' says sort ascending
primary on array 'A$'.

Line 1010 establishes a primary sort (ascending) by
composer, with a secondary sort key by song title - keeping
the other two arrays with the key data.

Line 1510 establishes a primary sort (ascending) by album or
group title, with a secondary sort by song title.

Line 2010 establishes a primary sort by song title with a
secondary key by record number.

Lines 2500 -~ 2610 provide for the printout on the screen of
the sorted data.

Line 4010 is IT! This is all it takes to do a sort using

4/13

THE ALTERNATE SOURCE Vol. I, No. 4

GSF! USR(17) says wuse the GSF multi-variable sort.
USR(VARPTR(SV$)) says 'sort it the way I told you' in SV$,.
USR(1) says start the sort in array element '1', and USR(I)
says sort 'I' elements.

Lines 4020 - 4080 are included to indicate the use of the
'Return Code' feature of GSF. GSF has its own error code
routines which are very useful when debugging your programs.

Lines 9000 on are the data statements where you can store
variable data.

IN SUMMARY

Sorting with GSF gives sorting speed, flexibility, and
simplicity of programming compared to a BASIC sort. The GSF
routines (or similar routines in RACET's Infinite BASIC) can
sort and hold together up to 15 keys and arrays. With a
little experimentation on variations built on the above
example, a large number of types of lists can be stored and
sorted. The list of 'lists' is practically endless. The
effort to modify a program to handle these other types of
lists is very simple, and the sorted outputs allow you to
realize more of the true value of your computers.

kkhkhkkrhhhhkhkhkhkkdkhkhkhhhhhhrkhkhkhk

PACKAGE DEAL!

For a limited time only, TAS is featuring a special
discount on a package of five versatile utilities! BTRACE
displays the current line being executed in one convenient
location instead of all over the screen. CPU is a Compress
Program Utility which allows you to remove all unnecessary
spaces and remarks from your Basic programs. SEARCH will
list any Basic program lines containing an occurance of your
choice. REPLACE will search and replace occurances in your
Basic programs. And CHANGES will generate a screen or
printed listing of differences between versions of programs
ycu are developing.

The TOTAL LIST PRICE, if purchased separately ,is
$89.75. But right now, you can purchase all five at a
package deal price of just $49.95! You save over $39.00!
(Unfortunately, this package is for DOS users only.) Act
now, before it's too late: Send $49.95 to The Alternate
Source, 1806 Ada Street, Lansing, MI 48910. Visa,
Mastercharge or COD phone 517/485-0344 or 517/487-3358.

4/14

THE ALTERNATE SOURCE Vol. I, No. 4

KILLER

By Allan Moluf

This article shows a program using some of the DOS
routines described in "RAMSTUFF" in issue #2 of The
Alternate Source. The program, KILLER, kills one or more
files with a single command. It is intended to demonstrate
the elementary use of the file system calls, as well as
showing how a machine language program can use parameters
typed on the command line. The first twenty lines of the
program include some equates for symbols mentioned in
"RAMSTUFF", which we will discuss in this article.

When you type a DOS command, DOS stores the characters
you type in a 64-byte buffer (at 4318-4357H), as well as
echoing them onto the screen. When you press the ENTER key,
DOS stores a CR code in the buffer (the CR is decimal 13 or
ODH) . (Thus, the number of characters in the command is
limited to 63.) DOS uses the first part of your type-in as
the command or program file. The rest of the characters you
typed can be used by that program. Commonly, the parameters
are separated by spaces. The parameters that KILLER expects
are the names of the files to kill.

To describe the actions of the program, I am going to
use something called "structured psuedo-code". Don't be
alarmed. You can forget that name right now. The important
thing is wusing English words and a few keywords (in
CAPITALS) to describe the decisions and jumps in the
program.

A statement is a simple English sentence. Statements
in sequence are separated by semicolons. A subroutine is
called by just using its name, or by its name followed by
arguments in parentheses. Comments for the reader are
enclosed in << and >>.

Decisions are indicated by using the keyword IF:

1. IF condition THEN statements ENDIF
2. IF condition THEN statements ELSE
statements ENDIF

Three types of looping statements are used:

1. FOR variable <- initial value TO

final value BEGIN statements ENDFOR
2. WHILE condition DO statements ENDWHILE
3. REPEAT statements UNTIL condition

The FOR loop is like the Basic FOR statement, except
that the loop is not executed if the initial value is
greater than the final value. (An optional STEP increment
may be used.) The WHILE loop first checks the condition if

4/15

THE ALTERNATE SOURCE Vol. I, No. 4

true, then executes the statements once and tests the
condition again. The REPEAT loop executes the statements
once and then checks the condition; if not true, it executes
the statements again.

The IF statement or any of the loop statements can be
used wherever statements are allowed; in other words,
nesting is allowed. Indentation is usually used to make the
amount of nesting clear.

The reason for using these constructs instead of
whatever you are familiar with is that these have proven
helpful in writing programs that do what we want. Note that
no labels or GOTO statements are used. It is easier (with
some initial practice) to write a program that works the
first time when we think in terms of these statements.
Please bear with me, even if you are not yet convinced. The
KILLER main program may be described in words:

Start looking at the first character of the
command buffer. Skip any non-blanks except CR.
(This skips the program name the first time, or
skips the name of the file we just killed.) Then
skip any blanks. This leaves us at a non-blank
which is either a CR or the start of a parameter.
If not a CR, go back to the top of the loop and
skip this file name. Eventually, we will get to
the CR at the end of the command. Then we return
to DOS.

Or, we can describe the main program like this:

Point to start of command buffer;
REPEAT
WHILE char <> blank and char <> CR
DO skip to next char ENDWHILE; << skip
non-blanks >>
WHILE char = blank
DO skip to next char ENDWHILE; << skip
blanks >>
IF char <> CR
THEN Killfile ENDIF; << try to kill the
file >>
UNTIL char = CR;
Go back to DOS

The description in psuedo-code seems easier to follow
because it concisely reflects the program structure. The
desired effect of this routine is to find each parameter and
call the routine Killfile to process it. 1In this case, the
processing consists of trying to kill the file identified by
the parameter.

This 1is an example of a paradigm (pronounced
pair-ah-dim), a model of how to perform a general function.

4/16

THE ALTERNATE SOURCE Vol. I, No. 4

We minimize the details in a clear description of the
essentials of the process. Experience in programming is
partly familiarity with a given language, but is largely
learning the paradigms for a given class of problemns.

Knowing the appropriate paradigms for a problem can
save a great deal of time. Instead of trying to figure out
how to attack the problem, the experienced programmer can
see that the program should be done in a certain way,
because it is similar to another program he has worked on.
As he proceeds, he may notice minor variations from the
previous versions and generalize his model .

Note that the paradigm is not how the entire program
works; it is how a given routine is structured. As the
program is broken up into smaller and smaller pieces, either
an appropriate paradigm is used for a routine (quick and
easy) or the routine needs a new structure (more errors are
likely here). Sometimes this is a clue that the routine is
too big and should be broken into simpler ones. Other
times, this is just a structure he has not encountered
before.

In KILLER, the work of killing a single file is made a
subroutine called Killfile (KFILE in the assembler listing).
Killfile has to use the TRS~DOS file system calls to get rid
of the file. Roughly, it uses the file name parameter and
the FOPEN call to identify which file it wants and then uses
the FKILL call to get rid of it. We will discuss all these
things after describing the Killfile routine in psuedo~code:

Save registers;
Copy the file name parameter into the DCB;
FOPEN the file;
IF no error
THEN FKILL the file ENDIF; N
IF errors in the FOPEN or FKILL
THEN
Display the file name parameter;
Display the error message for the error code
ENDIF
Restore registers

Subroutines in machine language programs may or may not
Save some or all of the registers they will use. It is
usually better for a routine to save any registers it does
change (unless it is passing results back to the caller in
that register). If this is not done, then any time the
routine is called, the bprogrammer must check which registers
can be changed by the routine and either make sure (make
absolutely positive) that the caller is not wusing the
registers or protect himself by saving the registers before
calling the routine and restoring them after the call.
Furthermore, the programmer must keep track of which
registers are changed by the routine; any modifications to

4/17

THE ALTERNATE SOURCE Vol. I, No. 4

the routine which change more registers make him check all
the places the routine is called from.

In summary , it is simpler and safer to always have
routines restore all registers they change, except for

registers returning results to the caller. (There may be
some system routines such as DOCHR which do not save all
registers this way. It is a good idea to write a routine

which saves the registers and then calls the system routine.
WRCHR is an example of this type.)

The TRS-DOS file system uses a 32-byte area to hold
information for an opened file. This is called the file DCB
(Device Control Block). File DCB's use space reserved
within your program or its data areas. Before you open a
file, you put its filename in the DCB you want to use.
After a successful file open, the DOS file system changes
all the information in the DCB. DOS uses the new values for
you whenever you call any of the file system routines. Each
file you have open at the same time needs its own DCB,
because that is how you tell DOS which file you are reading
or writing or whatever.

Before the file is opened, you put the name of the file
in the DCB. Then you can call either of the two file open
routines, FOPEN or FINIT. The FOPEN routine will attempt to
open an existing disk file; if it can not open it, it will
return with an error code. The FINIT routine will attempt
to open an existing disk file; if it can, fine. Otherwise,
FINIT will try to make a new, empty file for you. It will
return with an error code only if it can not find an old
file or make a new file. KILLER uses FOPEN instead of FINIT
because it just wants to kill files that already exist; if
it used FINIT, it would end up creating a new file and then
killing it, instead of simply saying the file did not exist.
FINIT is usually used only when making an output file.

You use the DE-reg, the HL-reg and the B-reg for both
file open routines. The DE-reg contains the address of the
file DCB, which should contain the name of the file in the
format FILENAME/EXT.PASSWORD:D althought the extension,
password and/or drive number may be omitted. The HL-reg
contains the address of a 256-byte buffer which the file
system will read disk sectors into or write them from. The
B-reg contains the logical record length (LRL) you will use
for reading and writing records. Use LRL=0 if you will get
and put data directly from and to the disk sector buffer
given in the HL-reg.

If you wish, you may have the file system give you
logical records of any fixed length from 1 to 255 by putting
that LRL in the B-reg for the FOPEN or FINIT. Then whenever
you use a FREAD or FWRITE call, you will give the address of
a user record of that length; DOS will transfer your user
record into the sector buffer and read and write sectors as
it packs and unpacks the records from the sectors. (It is
really easy, just hard to explain in words.)

4/18

THE ALTERNATE SOURCE Vol. I, No. 4

In KILLER, we will not be reading or writing, but the
FOPEN routine still expects the LRL and sector buffer
address, so we do set them. When the FOPEN routine returns,
it may have opened the file, or some error may have
occurred. The zero flag is set and the A-reg contains zero
if no error, i.e. the file was opened okay. If =zero was
returned, the DCB now contains the data that the DCS file
system needs to keep track of the state of this file instead
of the file name which was there before the open call. The
DCB now tells what drive the file is on, where the disk
directory for the file is, where the data sectors are
written on disk, how many records are out there and what the
current position is, among other things.

Any of the other file system routines expect the
address of the DCB in the DE-register so they can read or
write or do whatever to the proper file. They all return
zero if okay or a non-zero error code. Some of the routines
need other parameters in other registers; some routines need
just the DCB address. All of them will check that the file
has been opened (the first byte of the DCB, which used to
contain the first character of the file name, has bit seven
set while the file is open) .

If there was an error on the FOPEN or FINIT call, a
non-zero code is returned in the A-reg and the DCB is not
changed. The error code is from 1 to 63, as described in
the TRSDOS manual on pages 6-12. The error description can
be displayed by calling the DSPERR routine.

It expects the error code in the A-reg and looks at the
top two bits to decide how to display the error. If bit six
is set, it will just give the error description; otherwise
it will tell the error code nurmber, the return address of
the routine that detected the error and try to display the
file name. (That does not work very well in DOS 2.2 unless
the file was successfully opened, so we will be able to set
bit six.) 1If bit seven is set, DSPERR will return to vou;
if not, it will immediately jump to the "DOS READY" entry
point and your program is effectively terminated., (We will
also set bit seven to prevent this from happening.)

Assuming that we opened the file with no error, killing
the file is easy. We just call the FKILL file system
routine with the address of the DCB in the DE-reg. It will
also return with a zero for okay or a non~zerc for an error,
so we do check the zero/non-zero flag and display the error
message if an error occurred.

Filekill might reasonably be split into two routines,
with the second just handling the error messages., We
display "***" the file name parameter from the command
buffer, " - " and then call DSPERR with 80H+40H added to the
error code to just get the error message. We use WRCHR to
display single characters to demonstrate saving registers
from a system call. (DOCHR does not save and restore the DE
register, so WRCHR does it for us.)

4/19

THE ALTERNATE SOURCE Vol. I, No. 4

MISCELLANEOUS COMMENTS :

1. I use "label EQU $" as a way of ensuring
that I do not have to retype the label line
when program revisions require adding an
instruction right after the label. It also
makes a convenient point for comments relating
to the program structure instead of to the
current instruction on the line.

2. When copying the file name parameter from the
command buffer to the DCB at the start of
KFILE, I assume the entire file name will fit
in the 32-byte DCB. A full file name is 24
bytes long counting 8+1+3+1+8+1+1 plus a
terminating blank or CR. The DOS file system
uses as much of the name as is there and
ignores anything else in the rest of the DCB.

3. The LDIR instruction that does the move is a
commonly used Z80 instruction, but may seem
complex. What it does is use the HL register
to point to data to copy and the DE register
to point to the destination. The BC register
counts the number of bytes to move.

First, it moves one data character to the
destination; that is (DL) <- (HL). Then it
increments HL and DE and decrements BC.
Finally, it checks if BC is zero; if not it
repgats the entire instruction, moving another
byte, incrementing HL and DE and decrementing
BC and testing BC again until eventually HL <-
HL+BC, DE <- DE+BC and BC <~ 0 and all the
bytes were moved.

4. The POP HL / PUSH EL after KFIL10 gets the
address of the start of the parameter into HL
and also puts it back on the stack so the
restore registers after KFIL90 will have the
right number of registers on the stack.

Most of this information is also presented in the
TRSDOS manual in Chapter 6, Technical Information.
Hopefully, this article will help you to use that material.
It does cover the format of the file DCB and the arguments
for the system calls in more detail +than this article.
KILLER program listing and instructions are on the following
pages.

4/20

THE ALTERNATE SOURCE

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210,
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520

Vol. I, No. 4

KILLER VER 1.1 - 1979 NOV 18 10:30
BY ALLAN MOLUF

Se v vt O s e

RIGIN EQU 5600H
CR EQU 0DH ;THE CODE FOR THE ENTER KEY
i
DOCHR EQU 0033H iROM I/O = SEND CHAR TO DISPLAY
DOSJMP EQU 402DH sRETURN TO DOS
CMDBUF EQU 4318H iDOS - 64-BYTE COMMAND BUFFER
DSPERR EQU 4409H iDOS ~ DISPLAY ERROR MESSAGE
FOPEN EQU 44241 ;FILESYS - OPEN OLD FILE
FKILL EQU 442CH ;FILESYS - CLOSE AND KILL FILE
H
e e e e e et s e e
i
ORG ORIGIN
KILLER EQU $ j=== PROGRAM ENTRY POINT
LD HL,CMDBUF ;START OF COMMAND BUFFER
KILL10 EQU $ i==— SKIP NON~BLANKS (EXCEPT CR)
LD A, (HL) 7GET NEXT CHAR IN COMMAND
Ccp LI |
JR 2 ,KILL20 7 IF BLANK
Cp CR
JR Z,KILL20 i IF END OF COMMAND
INC HL ;ELSE SKIP THIS NON-BLANK
JR KILL10 ;AND CHECK THE NEXT CHAR
KILL20 EQU $;=== SKIP BLANKS
LD A, (HL) iGET NEXT CHAR IN COMMAND
CP LI
JR NZ,KILL30 ;IF NOT A BLANK
INC HL
JR KILL20 iSKIP THIS BLANK
i
KILL30 EQU $ i=—= AT NEXT PARAMETER OR CR
Cp CR iSEE IF END OF COMMAND
CALL NZ ,KFILE iNO, TRY TO KILL THE FILE
JR NZ ,KILL10 ;KEEP KILLING UNTIL CR
JP DOSJMP :THEN GO BACK TO DOS

We NS e s e Ne %o Ne we

KFILE TRYS TO KILL THE FILE WHOSE NAME IS POINTED
TO BY THE HL REGISTER. IF AN ERROR OCCURS, IT
DISPLAYS AN ERROR MESSAGE.

ENTRY :

HL ADDRESS OF FILE NAME PARAMETER

4/21

THE ALTERNATE SOURCE Vol. I, No. 4

00530 ; EXIT: NO REGISTERS ARE CHANGED

00540 ; EITHER THE FILE HAS BEEN KILLED OR
00550 ; AN ERROR MESSAGE HAS BEEN DISPLAYED
00560 ;

00570 KFILE EQU $;=== TRY TO KILL A FILE

00580 PUSH AF :SAVE REGISTERS

00590 PUSH BC

00600 PUSH DE

00610 PUSH HL ;sPARAM ADDR ON STACK TOP
00620 LD DE,DCB ; ADDRESS OF FILE DCB
00630 LD BC,32 ;LENGTH OF THE DCB
00640 LDIR ;s COPY THE FILE NAME
00650 LD DE,DCB

00660 LD HL,BUF ;B, DE AND HL FOR OPEN
00670 LD B,0

00680 CALL FOPEN

00690 JR NZ,KFIL10 ;IF AN ERROR

00700 CALL FKILL ;NOW KILL THE FILE
00710 JR Z ,KFIL90 ;IF OK

00720 KFIL10 EQU $;=-- ERROR ON FILE OPEN OR KILL
00730 POP HL ;GET ADDR OF PARAMETER
00740 PUSH HL ;AND SAVE IT AGAIN
00750 PUSH AF ;SAVE ERROR CODE

00760 LD B,3

00770 KFIL20 EQU $;==-- DISPLAY ASTERISKS FIRST
00780 LD A,'*!

00790 CALL WRCHR

00800 DJINZ KFIL20

00810 LD A, !

00820 CALL WRCHR ;AND THEN A SPACE
00830 KFIL30 EQU $;==-— LOOP TO DISPLAY FILE NAME
00840 LD A, (HL)

00850 CcP v

00860 JR 7 ,KFIL40 ;IF END OF PARAMETER
00870 Ccp CR

00880 JR Z ,KFIL40 ; IF END OF COMMAND
00890 CALL WRCHR

00900 INC HL

00910 JR KFIL30 ; CHECK NEXT CHARACTER
00920 ;

00930 KFIL40 EQU $;=-= REACHED END OF FILE NAME
00940 LD aA,' !

00950 CALL WRCHR

00960 LD A,'='

00970 CALL WRCHR

00980 LD aA,' "

00990 CALL WRCHR

01000 POP AF ;GET SAVED ERROR CODE
01010 OR 80H+40H ;0COH = 80H + 40H
01020 ; 80H ASKS FOR RETURN INSTEAD OF A
01030 ; JUMP TO DOS AFTER THE ERROR MSG.
01040 ; 40H ASKS FOR NO EXTENDED ERROR

4/22

THE ALTERNATE SOURCE Vol. I, No. 4

01050 ; DISPLAY (WHICH IS UNREADABLE IF
01060 ; IT WAS A FILE OPEN ERROR) .
01070 CALL DSPERR ;HAVE DOS SHOW ERROR MSG
01080 KFIL90 EQU $ i==— NOW RESTORE THE REGISTERS
01090 POP HL

01100 POP DE

01110 POP BC

01120 POP AF

01130 RET

01140 ;

01150 jmmm e e e

01160 ;

01170 ; WRCHR WRITES A SINGLE CHARACTER FROM THE A-REG
01180 ; TO THE SCREEN DISPLAY. IT SAVES DE BEFORE IT
01190 ; CALLS THE ROM ROUTINE TO DO THE WORK.

01200 ;

01210 ; ENTRY: A CHAR CODE TO DISPLAY ON SCREEN
01220 ;

01230 ; EXIT: A AND FLAGS HAVE BEEN CHANGED

01240 ;

01250 WRCHR EQU $;SEND A CHAR TO THE DISPLAY
01260 PUSH DE

01270 CALL DOCHR ; ROM ROUTINE

01280 POpP DE

01290 RET

01300 ;

01310 e e e e e

01320 ;

01330 DCB DEFS 32 iDEVICE CONTROL BLOCK FOR FILE
01340 BUF DEFS 256 SECTOR BUFFER AREA FOR FILE
01350 ;

01360 END KILLER

INSTRUCTIONS FOR USING KILLER

Killer is executed directly from DOS mode, in the
following manner:

KILLER AAAA BBBB CCCC DDDD EEEE FFFF GGGG

where AAAA, BBBB, CCCC, DDDD, EEEE, FFFF, and GGGG are files
that you want to kill. You may enter as many files as you
can fit on the command buffer. Extensions and passwords
must be included where necessary; drive number is optional.
Killer has been tested using both TRSDOS and NEWDOS.

Killer just may become one of your most valuable tools!

4/23

THE ALTERNATE SOURCE vol. I, No. 4

TEACH YOUR TRS-80 TO TALK!

A Product Review by Jim Stutsman

Communicating with a computer has always been a one

sided proposition. You spend hours typing in a program
using the language that the computer understands, only to
get a response of "SN ERROR IN 100". Who among us has not

at one time or another wished that the blasted thing could
speak using words we understand instead of jargon? True
man-machine communication by spoken word is still a long way
off , but thanks to a new product from Percom Data Company,
it is now possible to program your TRS-80 to talk.

The new product is called Speak-2-Me-2. No, it's not a
"droid, but a small printed circuit board which installs in
a Texas Instruments (TI) Speak and Spell learning aid. This
enhancement allows the Speak and Spell to be attached to the
printer port (or printer adapter cable) so that the computer
has command of it. The full vocabulary of the Speak and
Spell may then be selected by the TRS-80. Although the
repetcire is limited to only those words that Speak and
spell "knows", the list can be expanded through the addition
of word modules available as Speak and Spell accessories.
Words can also be spelled out, since Speak and Spell can say
the entire alphabet and the numbers from zero to ten.

While the relative scarcity of verbs in Speak and
Spell's vocabulary makes sentence construction a bit
difficult, the overall quality of speech is far superior to
most other speech synthesizers. The technique used to
generate speech, while held proprietary by TI, is not the
commonly used phoneme method which causes speech to sound
mechanical and strange. Because of this, new w ads cannot
be added to the vocabulary by joining sounds, as with some
other speech synthesizers.

As previously stated, Speak-2-Me-2 is a small circuit
board which is designed to fit in the battery compartment of
the Speak and Spell. Installation of Speak-2~Me-2 requires
that the Speak and Spell be modified. The mod consists of
three printed circuit etch cuts and the attachment of six
wires. Since the battery compartment is occupied by the new
board, the Speak and Spell must also be modified to accept

power from an external source. A nine volt battery
eliminator, of the type sold in most Radio Shack stores,
serves this purpose. Once the modifications are complete

the Speak and Spell will no longer function in its old
capacity, as the keyboard and display are completely dead.
Although Speak-2-Me-2 is furnished as an assembled and
tested board, it is really more of a kit, since the
purchaser must install it and modify the Speak and Spell
(not included with Speak-2-Me-2) himself. The
modifications, while not terribly difficult, are definitely

4/24

THE ALTERNATE SOURCE Vol. I, No. 4

not for amateurs. Only persons with prior experience in
soldering on small printed circuit boards should attempt
them.

Software control of Speak-2-Me-2 is achieved through a
simple driver which is provided as a short BASIC program
that the user keys in. The driver operates as a USR
function, with the integer parameter signifying which worad
or phrase is to be spoken. After being keyed in and RUN, it
indicates successful installation by announcing "READY".
Two simple example programs are provided. The first is a
simple pre-school alphabet game in which the player must
push the key corresponding to a spoken letter. Perhaps
hinting at future products, the second program causes
Speak-2-Me~2 to recite "Yesterday I was a young machine.
Today I talk, tomorrow I should learn to walk."

While the number of possible applications for
Speak-2~Me-2 seems limitless, the areas of education and aid
to the handicapped seem full of promise. Connected to a
TR5~80, a Speak and Spell could literally become the voice
of someone unable to speak. It might also replace the
screen for a blind person. With regard to education, Speak
and Spell by itself has already proven to be a powerful
learning tool. With Speak-2-Me-2, it can be used in even
more ways.

Speak-2-Me-2 is available for $69.95 from Percom Data
Company, Inc., 211 North Kirby, Garland, TX 75042. Orders
may be placed by calling toll-free (800) 527~1592. For
answers to technical questions, call (214) 272-3421. The
purchaser of Speak-2-Me-2 is expected to already have a TI
Speak and Spell which he must modify himself. It will also
be necessary to provide nine-volt power for operation of the
modified unit.

Khkkhkhhhkhkh kA kh Ak kA kA Ak kk kK k%

(Timothy S. Smith from Monmouth, IL submitted this short
assembly language routine which will eliminate the slash in
the zero on line printer output. Very useful when printouts
are to be read by the general public, for mailing labels,
billings, etc. ed.)

BFF3 F5 PUSH AF ;SAVE FLAGS/ACCUMULATOR
BFF4 79 LD A,C ;LOAD CHARACTER INTO ACCUM.
BFF5 D630 SUB 30H ;SUBTRACT VALUE OF ZERO
BFF7 2002 JR NZ ,BFFB ;IF NOT ZERO GO ON

BFF9 OE4F LD C,4FH ;IF ZERO CHANGE TO LETTER O
BFFB F1 POP AF # RECOVER FLAGS/ACCUMULATOR
BFFC C38D05 JP 058DH 7ON TO LINE PRINTER ADDRESS
TO USE: Load beginning of above routine into the line

printer driver address 4026H=MSB, 4027H=LSB
(From above, 4026H=F3, 4027H=BF)

4/25

THE ALTERNATE SOURCE Vol. I, No. 4

BIT WITS

Dear Jesse Bob,

I use PEEK and POKE a lot, as well as VARPTR for
manipulating machine langluage programs and experimenting.
In some programs I can do whatever I want, but in others all
I seem to get is "OVERFLOW" errors on every PEEK or POKE.
What am I doing wrong? Is there something wrong with my
Level II ROM?

Nervous Ned

Dear Ned,

Calm yourself, your ROM is fine. Your problems stem
from the way Level II BASIC handles addresses in PEEK and
POKE statements.

Whenever you PEEK or POKE, the address 1is converted
internally by BASIC to a 16 bit integer. If the address is
above 32767 decimal then the most significant bit will be a
1, which will cause BASIC to regard the 16 bit result as a
negative number. If the number it started out with was
positive, BASIC panics and reports an overflow error. To
overcome this problem, you must start out with a negative
number whenever using PEEK or POKE with addresses above
32767 decimal. For example, address 49152 (C000 hex) must
be specified as -16384 in a PEEK or POKE.

The boys and I don't like to hassle with these phony
negative addresses, so we use the following defined function
to take care of it for us:

100 DEF FNAD(A!) = Al+(A!>32767)*65536

The key to the success of this function is the logical
expression "(A!>32767)". In evaluating this, Level II will
return a value of 0 if false and -1 if true. Thus, if A! is
less than 32768, the result will be A!+0%*65536, or simply
Al If the address is greater than 32767, the result will
be Al+(-1*65536) or A!-65536, which converts it to the
proper negative number. The nice thing about this function
is that if you inadvertently use it with an address that is
already negative, the address will be left unchanged.

(3)

Jesse Bob,

My DOS 3just got me again! I wrote a program which
reads several long files and creates a very short file

4/26

THE ALTERNATE SOURCE Vol. I, No. 4

sumpmarizing the input. I just ran it for four and a half
hours summarizing data, and lost it all trying to write to a
write protected diskette. No error was reported wuntil I
tried to CLOSE the file.

I also have difficulty writing programs which other
people will use. If an output file is OPENed on a write
protected diskette, a "DISK FULL" or "TOO MANY FILES" error
is reported, which is very confusing. As a result, I have a
severe phobia of diskettes and break into hysterical
laughter at the sight of the write protect tabs. Can you
help me?

Tense in Toledo

Dear Tense,

Don't get hung up on write protect tabs! Next time let
your program check the disk BEFORE you open the file. This
can be done with the following line:

100 POKE 14305,N : POKE 14316,208: WP=PEEK(14316) AND 64

The value of "N" should be "1" for drive 0, "2" for
drive 1, "4" for drive 2, and "8" for drive 3. "WP" will
contain zero if a drive is NOT protected, i.e., may be
written on, or a 64 if it is write protected.

~(J) =
Dear Jesse Bob,

My printer recognizes the ASCII form feed character,
CHR$(12), as a request to feed paper to the top of the form
that I have defined at the printer. Whenever I do a PRINT
CHR$(12) , though, it prints an extra line past the top of
the form. In fact, every page gets an extra line so that my
text "walks" down as I print. I've had the printer checked
and it seems to be in good working order. Any ideas?

Puzzled in Los Angéles

Dear Puzzled,

What you really have is two problems. Your first
problem is that the Level II printer driver intercepts the
form feed character and does not print it directly.
Instead, it subtracts the current line count from the number
of lines per page in the printer DCB to determine how many
lines remain on the current page. It then issues that many
line feed characters to simulate a form feed. This

4/27

THE ALTERNATE SOURCE Vol., I, No. 4

technique was probably used so that even printers which do
not recognize the form feed character can be forced to the

top of a new page by printing a CHR$(12). The disadvantage
of doing the form feed in software is that the program has
to "know" how many lines are on the form. To control the

printer directly with the form feed character, try the
following one-liner:

100 IF (PEEK(14312) AND 240)=48 THEN POKE 14312,12
ELSE GOTO 100

The IF statement first checks the printer status lines
for a ready state. Only the four most significant bits are
used for status, hence the "AND 240" to mask off the four
lower bits. Note that the expression "(PEEK(14312) AND
240)" will return the printer status, and may be used in an
IF statement to prevent a program from going into suspended
animation due to an inoperative printer. Once the printer
has been found to be ready, the form feed (decimal 12) is
poked directly into the printer port, bypassing the driver.

Your second problem is due to an anomoly in the Level
II ROM. The most common line spacing used in computer
printers is six lines per inch. Standard paper runs eleven
inches per page. Most third graders can compute a page to
be sixty six lines long, but the ROM plugs the printer DCB
with 67. This causes every page to be one line too long,
which causes the "walking" text. The solution is to simply
POKE 16424,64 at the beginning of any program which is to
use a PRINT CHR$(12) to go to the top of form.

Jesse Bob and TAS wish to thank all the readers who sent in
guestions. According to Jesse Bob, "Me an' the boys were
busier than mosquitoes in a nudist colony answering all the
mail. Y'all had some dang good questions!"

If you have a technical question that you have been unable
to get answered, send it to TAS for review by Jesse Bob or
one of his wranglers on The Circle J Software Ranch. While
only a limited number of letters can be published in each
issue, a response can be guaranteed by including $6.00 with
your question. If the question is published or cannot be
answered within 60 days, your check will be returned.
Otherwise you will get a letter from Jesse Bob or one of the
boys with your answer.

kkkhkhhkkhkhhhkhdhkhhhkhhhhhrkkkhdk
Could anyone inform us of any activities, applications,
modifications, etc. that are being used to allow the

visually impaired make use of the TRS5-807? Please contact
Charley at TAS, (517) 485-0344. Thanks !

4/28

THE ALTERNATE SOURCE Vol. I, No. 4

BULLETIN BOARD

CONTEST!

Richcraft Engineering is sponsoring a "Write the
Fastest Disassembler in Basic Possible” contest. The best
time wins; total of three prizes; guaranteed $100 minimum
for first prize. Interested persons may contact Richcraft
Engineering at Drawer 1065, #1 Wahmeda Industrial Park,
Chautaugua, NY 14722 (or TAS) for contest rules and entry

blank. $10 entry fee. Hurry, deadline for submissions is
September 30, 1980. Winners announced not later than
October 15th. Winners names will appear in

80~Microcomputing!

PATCHES

Centronics owners having problems with Mumford's
Spooler program, take note! Form-feed problem can be
corrected by changing form feed character from 13 to 138.
This character occurs at the start address of the program
plus 467. To be safe, PEEK this location to be sure it is a
13 before poking in 138. Earlier versions of Spooler may be
offset from this location by a few bytes. If you are
unwilling or unable to make this change, Mumford will take
care of the problem for just $2.00. Return tape to Mumford
Micro Systems, Box 435, Summerland, CA 93067.

USER GROUP INFO
Milwaukee Area Users Group now has a (CBBS) Bulletin

Board! Phone area code (414) 282-8118.

NEW PRODUCTS

THE AMAZING BLACKJACK MACHINE! An extraordinary
program designed for the development, study , and analysis of
blackjack playing strategies and betting systems. It

features high speed test runs with the computer playing both
sides under an almost endless variety of conditions that can
be set by the user. At any time you may interrupt the test
run and get a printout of additional data (player busts,
dealer busts, cards per hand, bet per game, etc.). This
program could return its purchase price a hundredfold!
Available from Richard A. Ramm, 64 Division Ave, Levittown,
NY 11756, for just $25.00.

FASTLOAD! Load at 8000 baud, 16 times faster than the

4/29

THE ALTERNATE SOURCE Vol. I, No. 4~

usual baud rate! JOY-80! A joy-stick for games as well as
an input device for such things as 1light level sensing,
voice input, noise sensing, etc. ROM EXTENDER! Plugs into
the back of the TRS~80 to provide full decoding to access
the wunused 2K space in the TRS-80 memory map. Can provide
up to 2014 bytes of extra memory! PRO-80! A prototyping
printed circuit board with a 40 pin connector for
conveniently assembling special peripheral circuits for the
TRS-80. For info on any of the four above products, contact
Microsette Co., 475 Ellis Street, Mt. View, CA 94043.

SUPER STEP! A machine language program designed to be
used in conjunction with TBUG. Super Step displays, in
various formats, a scrolling field of disassembled RAM
locations corresponding to the PC of an animated 280
Processor. Super Step can single-step or TRACE any 280
machine code, and is displayed in a before/after format that
includes CPU registers, stack elements and an expanded flag
register configuration. Also displayed is an intelligent
RAM window that selectively posts local RAM environments or
a user-designated area. Super Step is $19.95 and available
from Allen Gelder Software, Box 11721 ,Main Post Office, San
Francisco, CA 94101. Please include 75 cents postage; CA
residents add 6%.

TIME & SCHEDULE PROGRAM! Make your time more
productive. Organize your life at home or at the office.
Plan ahead the easy way with Softronics Time & Schedule
Program. Features like selective screen message erasing,
automatic day of week calculating, debounced key and search
modes for fast alteration, and more makes this a pleasing
and easy to use system. Available on tape for $19.95, disk
for $29.00. Write Softronics Computer Services, P.O. Box
1465, Mesa, AZ 85201.

Now, a LINE PRINTER III! Features a 9 X 9 dot matrix,
150 characters per second print speed, 132 columns, 6 or 8
lines per inch, 2K buffer, various print sizes and more!
Just $995. Information available from 80-Microcomputer
Services, 118 Masten Ave, Cohoes, NY 12047.

INFORMATION WANTED

Sigrep Data, Box 14-522, Panmure, Auckland, New
Zealand, 1is interested in programmes suitable for operation
in their own bureau or for use as part of the package in our
"Turn Key" systems. Details and prices of programmes
suitable for TRS-80 Model II 64K and written for use in the
commercial, medical, educational, scientific, or technical
fields would be appreciated. Contact 1I. H. Taylor,
Operations Manager.

4/30

THE ALTERNATE SOURCE Vol. I, No. 4

COMPUTING ELAPSED TIME

(This information is from an actual Meta Technologies
Bulletin released February 22, 1980. Subscription
information can be found at the end of this article.)

SUBJECT: TRS-80 Elapsed Time Calculations

PROBLEM(S) /ISSUES: While the TRS-80 does provide a function
that returns the time (TIME$), a function for obtaining
elapsed time is not provided.

IMPLICATIONS: Elapsed time is valuable when measuring the
performance of a subroutine or other code. It may also be
employed to determine response rate, or the lack of response
(is the computer being used?).

RECOMMENDED ACTION(S): KXey in, run and study the code
listed below.

10 CLEAR500

20 ' FUNCTION BELOW CONVERTS STRING RETURNED FROM THE
"TIME$" FUNCTION INTO SECONDS

30 DEF FNTM(TM$) =3600 *VAL (MID$ (TM$,10,2)) +

60*VAL (MID$ (TM$,13,2)) + VAL (MID$ (TM$,16,2))

50 !

60 PRINT:PRINT "HIT ANY <KEY> TO START TIMER ..."

70 IF INKEY$="" THEN 70 ELSE T1$=TIME$

80 PRINT "HIT ANY <KEY> TO STOP TIMER ..."

90 IF INKEY$="" THEN 90 ELSE T2$=TIMES$

100 PRINT "ELAPSED TIME ="; FNTM(T2$) -~ FNTM(T1$);
"SECONDS"

110 GOTO 60

SOURCE/CONTACT: Bob Fiorelli

TO SUBSCRIBE: Subscriptions to Meta Technologies
Corporation Bulletin Service are $36.00 per year. Bulletins
are similar to the one above, and are mailed first class
when the news breaks, not just monthly. Free year-end index
with all subs. Subscriptions also available through TAS;
those choosing this route also receive FREE a no-punch
storage binder. Write to Meta Technologies at 26111 Brush
Ave in Euclid, OH 44132, or to The Alternate Source at 1806
Ada Street in Lansing, MI 48910. Please indicate whether
you would like your subscription to begin from the beginning
(default if not specified) or with the next available
bulletin.

4/31

THE ALTERNATE SOURCE Vol. I, No. 4

TAS SURVEY #4

First, the winners of survey #2 are:

parrell M. Younts, of Matthews, NC
Wes Kar, of Pheonix, AZ
Ronald J. Ungashick, of Canton, OH

A ten dollar certificate has been awarded to these
three gentlemen, which they can use in conjunction with
ANYTHING offered by TAS. The certificates are just like
cash, and may be used even with our special discounted
deals! We would like to extend our thanks to all who
participated in Survey #2.

For this month's survey, we are simply going to repeat
the theme from last issue, thus providing us with a method
of rewarding both you and your favorite author.

Simply go through this issue and select your favorite
article (and author). On a separate slip of paper, write
down the article you chose, and your name and address. We
would also be interested in any other general or specific
comments you have regarding TAS. Mail this information to:
SURVEY #4, The Alternate Source, 1806 Ada Street, Lansing,
MI 48910.

Certificates worth $10.00 each will be awarded to three
lucky participants. We will also tally the votes and reward
the winning author with a $25.00 certificate.

Winners of TAS SURVEY #3 will be announced next issue,
along with the winning author from issue #3. Entries for
SURVEY #4 will be accepted until August 1, 1980, and winners
will be announced in TAS V1, N6.

[T 2222222222222 2 2222222222222

BRAND NEW!

You'll be challenging all members of your family and
friends as well! PINBALL is a fast 2-80 simulation of the
real thing, and just as challenging! Beware of the "Bermuda
Square"! Good graphics, complete with sound, and just
$14,95. In stock and available now, from The Alternate
Source.

FLIGHT SIMULATOR--A whole different kind of challenge.
It's as realistic as anything we've ever seen before! From
the control board to the 3D graphics, this is one you'll
never tire of.

Microsoft's BASIC COMPILER has been released! Before
you buy, check our price: just $175.00! (Save $20.00 off
the list price! That's a week's worth of 1lunch and gas
money!) . We'll guarantee you the lowest price; if you find
one lower, call us first.

4/32

THE ALTERNATE SOURCE Vol. I, No. 4

SUPERZAP PATCHES

By Bruce Hansen

This article will give some enhancements to SUPERZAP
3.0 as well as provide one major fix.

One of the major complaints I had about SUPERZAP was
that it wouldn't display lower case letters on the ASCII
display of a sector dump. But, by changing the machine
language display routine, I could display both wupper and
lower case. Line 32100 contains the following DATA
statement:

32100 DATA 254,91 ,48,04,254,33,48,02,62,46

To make SUPERZAP display lower case letters (provided
the proper hardware mod is installed) change the 91 to a
123.

To stop SUPERZAP from changing all spaces to periods,
change the 33 in line 32100 to a 32.

One warning about the lower case change. If the
upper-lower case switch is not in the lower case position,
any lower case letters will appear as special characters.

There is also a major bug in SUPERZAP. I call it major
because if it happens, a diskette could be ruined!

The DFS (Display File's Sectors) option of SUPERZAP
allows the user to look at a file without playing around
with the directory. To do this, SUPERZAP opens a random
file. Suppose the user has completed all changes while in
the DFS option. Hitting the "X" key returns control to the
menu. Suppose no other options are to be run, so the break
key is pressed to exit the program. Believe it or not, the
file displayed with the DFS option is still open! If the
diskette holding that file wes switched with another, and
some command which closes a file (such as RUN, CLOSE, etc.)
was executed, the diskette would be ruined! It appears that
the file is not closed unless another SUPERZAP command is
executed.

The fix for this bug is simple. Just change line 25200
to the following:

25200 ON ERROR GOTO 0: CLOSE

Now when ever the menu is printed, any open files will
be closed.

4/33

THE ALTERNATE SOURCE Vol. I, No. 4

DIRECT STATEMENT IN FILE

By Ken Edwards

This problem crept up on me when I was converting some
Model I software to run on the Model II TRS-80. The
programs I was trying to convert had to be s ed in ASCII
format, and many of the program lines were longer than 240
bytes. When you try to load the program , any line longer
than 240 bytes will not load properly, and the computer lets
you know this by giving you a "DIRECT STATEMENT IN FILE"
error.

on my Model I TRS-80, I usually solve this problem with
either SUPERZAP or Z80ZAP. But I don't have SUPERZAP for
the Model II yet, so I had to come up with something
different. Rather than manually reconstructing each and
every program I needed to convert, I wrote this program.

The program will solve any "DIRECT STATEMENT IN FILE"
errors encountered on the Model II, and will also work on
the Model I for those persons not having SUPERZAP or Z80ZAP.

To use the program, you will first need to know the
program line number that is causing the problems (the one
with more than 240 bytes). To find this line, Model I users
can just load the program. The computer will respond with
the "DIRECT STATEMENT IN FILE" error message. Type and
enter "LIST". The program will list up through the line
with the error. Write down (or remember) this line number.

Model II users can find the problem line by attempting
to load the program with the error. The Model II will try
to load the program, and, not being able to, will hang up.
When the red 1light on the disk drive goes out, press the
"F1" key. The machine will then respond with "DS ERROR".
Now, list the program. It will list up to the problem line,
and you should make note of that line number.

Now, run my program. It will step through each line of
your program, and ask you if that line is okay. If it is,
just hit the ENTER key. When it comes to the line with the
error, enter the new line, making sure that it does not
exceed 240 bytes in length. You will either have to do some
editing to the line, or chop some off and insert it later.
If you decide to chop some of the line off, you might want
to take notes on what you've deleted so that you can
re-insert it later.

Sometimes a program will have more than one line that
is longer than 240 bytes. When you first load the program,

4/34

THE ALTERNATE SOURCE Vol. I, No. 4

it will only load up to the first line that is too long. 1If
there are others, you won't be able to tell. My program
will test for these other lines. If it discovers any, it
will 1let you know. It will also tell you the length of the
problem line, so that you know how many bytes you have to
chop off. This way, you'll only have to run the program
once to take care of any and all problem lines.

PROGRAM LISTING

100 cLs
110 CLEAR 3000
120 INPUT "OLDFILE"; O$
130 INPUT "NEWFILE"; N$
140 OPEN"I",1,0$: OPEN"O",2,N$
150 LINEINPUT #3 ,A$
160 IF LEN(A$)>239 THEN PRINT
"THIS LINE IS";LEN(A$);"BYTES LONG. RE-ENTER."
170 CLS: PRINT "PRESS ENTER IF LINE IS OKAY ,
OTHERWISE ENTER THE NEW LINE."
180 PRINT A$
190 LINEINPUT C$
200 IF C$ <> "" THEN PRINT $2,C$:
ELSE PRINT #2,A$
210 IF EOF(1) THEN CLOSE: END
220 GOTO 150
230 CLOSE

(Editor's note: When Ken first sent this article, we
discussed the possibility of modifying it so that any line
not over 239 bytes would automatically be rewritten to disk.
Their is such a version in existence, however it does not
handle certain ‘'Direct Statement' errors. Ironically ,one
example was in the program and article Ken sent us (via
RS-232/Modem) . The article had a portion of the above
program embedded in a large remark statement. Terminating
each 1line was the standard ODH, AKA a carriage return. 1In
order to make the program run properly, we had to change the
OD's to OA's (0AH=down arrow or line feed without a carriage
return). For this reason, we 1left the program in the
original form that Ken submitted.

For quick and dirty text editing of lines that only
have the 'line too long' problem you can modify the program
so that it will automatically write lines shorter than 240
bytes. Append line 160 to also read "ELSE GOTO 200". After
the PRINT#2, C$ in line 610 add C$="" after the colon and
before the ELSE. I think that'll do it.)

4/35

THE ALTERNATE SOURCE Vol. I, No. 4

FROM THE SOURCE'S MOUTH

By Joni M. Kosloski

This is sort of our "mid-point" of our first year.
It's went by much too quickly. Thought I'd take a peek at
where we started, where we are, and where we're going.

Many of our original intentions have been altered. The
primary stimulus we gauge many of our decisions on 1is your
direct feedback. We entered with many assumptions, some
undoubtedly wrong.

We had expected more response from users groups. We
nad assumed that many were structured similar to Central
Michigan's TUG, i.e., a good mix of programmers, business
folk, hobbiests, neophytes and the like who bounced around
ideas, provided demonstrations of soft and hardware,
including (gasp) other systems. The meeting offers
opportunities for persons with similar interests to share
learning. The meeting offers opportunities for persons with
similar interests to share learning.

In our locale, we're . finding that the "red tape"
involved puts a strain on the mere existence of the group.
Meeting places, printing costs and other factors have
quadrupled membership costs (from $3.00 to $12.00). This
was the original stimulation for our offer to help market
"User Group Original Packages" on the last Bulletin Board.

If you haven't guessed by now, our response has been
extremely minimal. My own suggestion would be for each
group to appoint a publicity person to help you both locally
and nationally. By all means don't make it your newsletter

editor! He's got his hands full! I had once envisioned a
"nationwide network" of user groups where, by some
communication link, a problem once solved would no longer
remain a problem. I had intended for TAS to partially
supply that link. Should someone not take the initiative to
promote your cl gquite possibly you could succumb to
apathy.

On Line Bulletin Boards could provide another link. We
desire to start one in our area as soon as we can keep a
system free long enough. Both Brian Allen and Dan Poorman
have provided support to initially get the ball rolling. A
lot of the local folks dropping by want to see programs run
before they buy them, and we have a ton of data entry to
perform, not to mention getting a newsletter ready, test
software and play. Assuming the Model III maintains
complete compatibility, maybe that will free one of our
in-house systems. For now, we feel the above mentioned
items rate higher.

Although I've seen a few exceptions, most Bulletin
Boards are pretty much unorganized data bases which don't
justify the long distance expenditure. Close to the source

4/36

THE ALTERNATE SOURCE Vol. I, No. 4

sources say the Source (ohhh...) is pretty slow. If they're
using a prime computer they should read Kilobaud. Micro-Net
is perhaps the best alternative. Even at $9.00 per hour,
they're cheaper than ma Bell, and faster than the Post
Office.

There are a few software packages it seems everyone
has. We would like +to elaborate on these packages. Ron
Johnston has provided a demo article for his GSF sort for
this issue. Did you know GSF has many other capabilities,
such as writing data to tape without the obnoxious leader
between every item, or block moves to move variables into
protected memory to keep them from getting clobbered when
you load another program? Lots of goodies there and that's
only one package! Surely someone is wusing APL for some
serious number crunching or the Structured Basic Translator
to "structure" your BASIC programs. Quite probably you have
much more capability than you realize--sitting right on the
shelf--next to your Level T Blackjack! The wheel is already
here if we can find someone who wants to market it!

Another implied original intent was to provide
information in a real timely manner. This requires a
distinction between "news" and "technical" information.
With the exception of a couple of editorial-type columns
The Alternate Source Magazine (yeah, I think I'll get risky
and call it THAT.) will feature material of the technical
vein. This is not to say we'll be cut and dried. I
treasure the personalities exhibited by Dennis Kitsz, Bill
Brown, Jesse Bob and some of our other authors. Memory
performing properly, it seems that de-personalization was
one of the big complaints about computers not so long ago.
Here and now though, we're close to reaching a point where
we have time to enter an article in a format usable by us,
print out a proof copy and get verification that nothing was
manipulated in the transportation. Should eliminate a few
bugs that way.

Meanwhile, articles of a "newsy nature" will be
delegated to our BTI (Between The Issues). This will
include hot rumors, reviews or other matter of a timely
nature. Quite possibly we'll also use this as an "overflow"
value to trap omissions and bugs from the main issues, and
maybe even throw in some semi-technical "meaty" stuff.
Although the projected release date will be the "odd"
months, we intend to wuse them in as timely a manner as
possible so publication times and occurances will vary as
the situation warrants. I think you'll see them expand as
The Alternate Source has expanded the past few months. We
intend for BTI to take a much more subjective stance than
TAS in general. It could prove a good medium for airing
complaints, commentary as it relates to the TRS-80 in
particular, microcomputing in general or to critique some
hot subject. Your letters are always welcome.

Ocops! I think I'm out of room.....

4/37

THE ALTERNATE SOURCE Vol. I, No. 4

MENU POWER!

By C.W. Simpson

Some folks down the way are talking about starting a
new organization for monitoring software. Their approval
will equate the "Good Housekeeping Seal of Approval" for
conputer software. Rumor 'has it that any program to pass
their criteria will contain nice user features like Z80 sort
routines and will be menu driven.

Menus work very well with the "ON VARIABLE GOTO (or
GOSUB) XXXX, YYYY, 2Z2ZZZ" etc. Perhaps another subtlety that
would be appreciated is to "key" the menu options to
"keywords" that provide clues to the option being selected.
For example:

<A>DD
<C>HANGE
<D>ELETE

This provides a mneumonic which we end wusers can
identify with, substantially more apropos than a numeric
key, I think you'll agree.

Ordinarily, this type of routine would produce
excessive code, most 1likely a series of IF statements
testing the condition of the variable selected. The problem
arises from irregular skips in the ASCII value of each valid
input character.

The following could be an effective Wéy to control
input and maintain meaningful responses for the user:

1700 REM &* DISPLAY OPTIONS **
110 CLS:I=5:PRINTTAB(30) ; "MENU:"
120 PRINTTAB(I);"<A>DD RECORDS"
130 PRINTTAB(I) ; "<C>HANGE RECORDS"
140 PRINTTAB(I) ; "<D>ELETE RECORDS"
150 PRINTTAB(I) ; "<R>EVIEW RECORDS"
160 PRINTTAB (I) ; "<S>ORT RECORDS"
170 A$=INKEY$:IFA$=""THEN170
ELSEOP=INSTR("ACDRS" ,A$) :
ONOPGOSUBXXXX,YYYY ,ZZ2Z ,AAAA ,BBBB
180 GOTO110

The "ON GOSUB" statement will only execute a valid
subroutine if OP (OP stands for OPtion--do you know why I
didn't use the whole word?) is greater than zero or less
than six. The only way OP can obtain one of these values is
if a proper selection is made.

4/38

THE ALTERNATE SOURCE Vol. I, No. 4

A beneficial side effect of this routine is that it
will preserve the menu display if any invalid character is
input, such as a down arrow or the clear key. If the
operator does input a valid character, s/he is immediately
revarded by execution of the proper subroutine.

In order to modify the routine, there are three steps
to consider. (A) Print the new option with its mneumonic
letter emphasized. (B) Add the mneumonic letter IN THE
PROPER POSITION to the INSTR literal parameter. (C) Provide
a subroutine IN THE PROPER POSITION for the new option to
branch.

Thanks to Allan Moluf for first exposing me to this
technique. It was placed on paper especially for Brian
Allen (of the popular Chicago Bulletin Board fame) as we
were discussing interactive input recently.

hhkkkkkhkhkhhhkkdkhkhkkhkkkrhkkhkhkhk

(Here is a subroutine, submitted by Richard K. Riley of
Augusta, ME that will POKE the date and time into TIMES$,
without going back to DOS or CMDing with NEWDOS. Very
handy! ed.)

7500 CLS:INPUT"IS THE CURRENT DATE/TIME DATA CORRECT";DT$
7510 IF LEFT$(A$,1)="Y" RETURN

7520 INPUT"WHAT IS THE CORRECT DATE (MM/DD/YY)";DT$
7530 POKE16454,VAL(LEFT$ (DT$,2))

7540 POKE16453, VAL (MID$ (DT$,2))

7550 POKE16452,VAL(RIGHT$ (DT$,2))

7560 INPUT"WHAT IS THE CORRECT HOUR (HH)";DT$

7570 POKE16451,VAL(DT$)

7580 INPUT"WHAT IS THE CORRECT MINUTE (MM)";DT$
7590 POKE16450,VAL(DTS$)

7600 POKE16449,0: RETURN

KRkkkhkhhhkhkkkkkhhhdkkrhhhkhhhkhsd

(And here's yet another POKE subroutine submitted by Mr,
Riley! These two lines will buzz the relay in the interface
(a nasty shock!), and can be used for just about anything.
Mr. Riley uses them for data entry errors and also to flag
the end of a sort routine. ed.)

7700 FOR X=1 TO 10: POKE 14308,X: NEXT
7710 FOR X=1 TO 10: NEXT: RETURN

4/39

THE ALTERNATE SOURCE Vol. I, No. 4

BOOT/SYS .WHO EXPLAINED

By Richard C. Vanderburgh

In The Alternate Source issue #3 on page 35, persons
were urged to type in (from DOS mode) BOOT/SYS.WHO, hit the
enter key, and while DOS was looking for the program, push
the "2" and "6" keys down together. The resulting message
is easily explained.

This DOS command loads in RAM starting at 4E00H, an
encrypted text stored on disk as part of the BOOT system
program, and starting at 4DD7 a short decoding routine.
When control is passed to 4DD7, the decoder begins by
copying the contents of keyboard RAM location 38FF to the B
register. If the 2 and 6 keys are depressed, 44H gets put
into B. HL is then initialized to point to the beginning of
the encrypted message, and a loop entered which first XORs
each coded byte with 44H (or whatever got put into B), then
XORs it with the low-order byte of the address it comes from
(pointed to by L). The decoded ASCII characters are then
output to the screen, until the control character "3" is
encountered, at which point an endless do~nothing loop
freezes the display and locks out the keyboard.

There are three clever elements to this encryption
scheme: first, the required keyboard input is not tested
for (such as with a CP 44), eliminating a possible hint;
secondly , the encrypted message will only decode properly if
it is located at the beginning of a RAM page block (address
beginning XX00); and thirdly, there are no obvious
symmetries or repetitive patterns in the coded text. If
Randy Cook had coded the decoder itself, and had it
self-destruct following execution, 1I'd probably still be
trying to figure it out!

Changing the message to one of your own choosing is not
too difficult, since the exclusive or (XOR) function is
reversible, and the order in which two successive XORs are
performed makes no difference. The tricky part is getting
your new message to the right place on disk, with the
directory sector-linkage properly embedded. You'll find
helpful a high memory monitor (such as RSM-2D) , and an
understanding of what Harv Pennington talks about in his
"TRS~80 Disk..." book concerning directory structure and
modifications to disk-stored code. The decoding routine
starts at Sector 0, relative byte 2D7; the message at Sector
1, relative byte 4.

If there is sufficient interest, I'll get into more
detail in a future issue of TAS.

4/40

THE ALTERNATE SOURCE Vol. I, No. 4

Using VARPTR to Help Minimize BASIC
String Compression Time

Copyright 1980 (c) by Bill Brown

This is the second in a series of articles on the VARPTR
functicn. The first, "What's Where VARPTR Points", appeared
in TAS V1, N3 and covered basic introductory material. The
present article assumes that you are familiar with the
previous one. The last few paragraphs briefly talked about
a method of using VARPTR to let you help BASIC manage string
storage space. At the end of this article I will give a few
short program segments that make use of that technique, but
the major portion of the article will deal with BASIC's use
of string space in general. Being familiar with that
process can be helpful in a wider context than just using
VARPTR, since there are other techniques that can also be
employed to make more efficient use of strings and string
space.

The situation where making use of VARPTR will help with the
string space problem can be pretty much summarized as one
where the program is:

1. wusing a lot of strings, and

2. moving string values around in memory by setting string
variables equal to strings that already exist (the
values of other string variables), rather than creating
new ones.

Most programs that use strings operate on the strings in
order to create new values. Only two general situations
come to mind where there is a lot of "string swapping". One
would be where you are sorting the string values in an array
into some desired order so that they are easier to use,
either by the program or by you when you print them (like
sorting a name-list into alphabetical order). The other
involves the need to insert new strings into, or delete them
from an existing list that is in an order that you want to
maintain (such as what an editor program has to do when you
are inserting or deleting lines). To make it clear why
there 1is a difference between "making" values and just
"moving" them, let's take a look at BASIC's use and
management of string space.

When your program starts to run, BASIC automatically sets
aside 50 characters of string space to hold the values of
the strings you use in the program. If you use no strings
at all this 50 bytes of memory will not get wused. If the
total number of characters you are using at any one time for
all of your strings 1is less than 51 characters, then the

4/41

THE ALTERNATE SOURCE Vol. I, No. 4

reserved string space will be adequate for your needs. When
more bytes of string space are needed at one time than -the
amount that is reserved, BASIC will stop the program and
give you an OUT OF STRING SPACE (0S) error message. It is
necessary to wuse the CLEAR statement to reserve a larger
amount of string space for such a program. If an- attempt is
made to reserve more string space than there is memory
available, then you will get an OUT OF MEMORY (OM) error
message when the CLEAR statement is executed. Since we
usually do not know in advance just how much string space we
are going to need, there is a certain amount of trial and
error here.

The string space that is reserved, either by default or by
your CLEAR statement, is always at the very top of memory ,
unless you have answered the MEMORY SIZE question with a
value that reserves some memory at the very top. For
simplicity, let's continue to refer to the "top of memory",
although that may not be quite correct. (You may find the
following discussion easier to follow if you refer to the
memory map shown in Appendix D of the Level II Reference
manual. Remember that even though we refer to 16K Level 1II
machines, that the operating system really has to deal with
32K of addressable memory in order to use the 16K of user
available memory. ROM and the part of RAM that is used for
special purposes occupies approximately the first (low) 16K
bytes of memory. Also, it may be helpful to keep in mind
that "high" and "low" memory refer to the address values.
Many diagram representations of memory, like Appendix D,
show "low" memory at the top of the page and “"high" memory
at the bottom. It is sometimes easy to get confused about
which end is up.) As far as the numbers are concerned then,
your program will be loaded into memory starting at address
location 17129 (42E9H), and will occupy as much memo¥y as it
needs for its storage. Immediately above the program is the
area where information is stored about simple variables and -
arrays, and is the section of memory that is "looked at" by
the VARPTR function.

After string space is reserved, and when your program gives
the first string variable a value, the characters for that
value will be stored at the top of string space (unless the
value is a constant in a program statement or is READ from a
DATA statement, both of which will cause VARPTR to point to
soreplace in the program storage area). If the variable is
A$, then X in the following statement

70 X=PEEK(VARPTR(A$)+2) * 256 + PEEK(VARPTR(A$)+1) :
IF X > 32767 THEN X=X-65536

will give us the memory address of the first character of
the string. BASIC keeps track of how much string space has

4/42

THE ALTERNATE SOURCE Vol. I, No. 4

been used, and when the next string variable is given a
value, that value is stored immediately below the first.
There is no separation in memory between where the two
strings are stored; BASIC "remembers" where each is stored
by storing the length of the string and its starting memory
location (once again, this is the VARPTR information).
After several string values have been set, we have the
characters for the several values strung out end-to-end,
starting at the top of string space and working down.

If the program now needs to change the value of a string
variable, say the first one, it simply puts the new value in
the next available string space (just like it was setting a
value for the first time), resets the pointers for that
variable to indicate the memory location of the new value,
sets its new length, and abandons the data in the string
space that held the original value. This process continues
when string values are changed, until there is no more free
string space. What results is a trail of "dead strings”
that was referred to in the last article. When a new value
needs to be stored and there is no room for it, BASIC stops
executing your program and does "garbage collection” so that
the memory that is occupied by the "dead" strings can be
reused. During this process is when you get those pauses
"for no apparent reason" in program execution and when the
computer will not respond to the keyboard, not even the
BREAK key.

The questions can be asked, "Why not reuse the space that
was occupied by the old value when storing the new value?"
or "Why not clean up (snug up) string space after each value
is set, so that we don't get the 1long pauses?" The easy
answer -to both of these questions is, that is the way
MICROSOFT decided to do it when they programmed BASIC. One
other answer to the first question has to do with the fact
that most of the time the two string values will not have
the same number of characters, i.e., not be the same length.
If the new value is longer than the old it will not fit into
the same space, and splitting it into two pieces would
require extra bookkeeping operations that would use more
time and memory, and BASIC would have to be redesigned
because that's not the way it does things now anyway. As
for why it doesn't clean up after itself as it goes, I
suspect that it has proven to be more efficient in the long
run to do it all at once, and that MICROSOFT takes advantage
of that. Whatever the case, let's take a quick look at the
clean-up process.,

Since the process of initially filling string space starts
at the top of string space, it only seems reasonable that
"string space compression" should start there also.
Essentially what happens is that BASIC first searches all of

4/43

THE ALTERNATE SOURCE Vol. I, No. 4

the currently defined string variables to find the one that
has its current value stored the highest in string space
memory. When that is found, the string wvalue for that
variable or array element is copied into the storage
locetions at the very top of string space (highest memory
address) . The pointer for the variable is set to the new
location, then BASIC searches for the string variable with
the next highest memory pointer and copies the value for
that one snug up against the first, resets its pointer and
goes after the next one. This process continues until all
of the currently defined strings have their values moved and
there is no "dead" space separating any of them. BASIC then
sets the pointer to the new "beginning of available string
space” and returns to the execution of your program.

There is one other aspect of string space management that
deserves an article of its own, and therefore will only be
mentioned here. It has to do with the "temporary" string
values that BASIC creates while executing your program, but
that are not wused directly as values for variables. For
example, in the statement

10 IF LEFT$(A$,3) <> "END" THEN GOTO 40

requires that BASIC temporarily build the three character
string (LEFT$(A%,3)) in order to check it against "END".
After the operation of the IF 1is complete, BASIC deletes
that string from string space; since it is at the very end
of the "good" strings that is easy to do. This helps keep
things tidy and cuts down on the frequency with which BASIC
has to stop for string space compression.

There is one glitch here, however. If more than one
temporary string is created in a single statement, only the
last one is deleted. Any others contribute to the "trail of
dead strings" (sounds like a good title of a science fiction
movie). For example, in the statement

20 IF (LEFT$(A$,3)+LEFT$(B$,3)) <> "ABCXYZ" THEN GOTO 50

more than one temporary will be created but only one of them
will be removed from active string space and the other(s)
will be "dead". If you happen to get one of these
situations inside a loop that repeats many times, string
space availability can deteriorate rapidily. The general
situation with temporaries is a good deal more complex then
is even alluded to here. A general statement of the
conditions under which temporaries are built but not
deleted, would require more page space than I want to devote
to it now. There are ways to compensate for this that
require a bit of trickery, and another article to explain.

4/44

THE ALTERNATE SOURCE Vol. I, No. 4

Before getting back to VARPTR let's take a short side trip
to look at some general considerations about the way that
string space is managed that may be helpful when writing
programs.

The more string space that you make available to the program
with the CLEAR statement, the longer it will take for the
running program to £ill the space, and the less often it
will have to stop for string space compression. Providing
more string space does not affect the amount of time it
takes to do the compression; because of the way the process
works, only the strings that have defined values are copied,
and it takes the same amount of time to do that in 15K of
string space as it does in 2K.

The time in seconds for a string compression is
approximately S(T-N/2)/5000, where T is the total number of
strings, S is the number of strings in the string space area
(i.e., have not been READ from DATA statments or set as
constants in the program), and N is the number of null
strings. For example, in the following program

10 CLEAR 1000

20 DIM S$(799)

30 FOR J=0 TO 499
40 S$(J)=CHR$(32)
50 NEXT J

60 X=FRE(A$)

line 60, which forces a string compression (explained
below) , will take about 65 seconds to compress string space
because S$=500, T=800, N=300. If line 40 is changed to

40 S$(J)=" ": REM ONE SPACE

then line 60 will take almost no time because all the
strings are constants and point into the program instead of
into string space. (This example, courtesy A. Moluf)

It might be nice if BASIC operated such that it dynamically
allocated string space to use all of available memory at any
given time, but there are several complications that would
be involved that give good reason for its not doing so. It
is possible, however, for you to accomplish pretty much the
same thing very simply. The CLEAR statement does two main
things when it is executed: it deletes all variables
(numeric and string) that are defined at the time, and it
allocates the amount of string space you specify. The MEM
function will tell you how much free memory is available.
If you load a program and PRINT MEM before it is RUN then
you will find out how much memory is available for variable
names and their values, for the stack (see memory map) and

4/45

THE ALTERNATE SOURCE Vol. I, No. 4

for string space. You can figure out by trial and error how
much variable and stack space is needed for a given program
to run. Once you know that (at least approximately) then
you can allocate the remaining memory to string space with a
CLEAR statement. As you are writing a program its length
changes and would require you to change the CLEAR allocation
accordingly. However, if you have determined that a program
needs 2000 bytes for the variables and stack, you can
dynamically and "automatically" allocate string space, with
respect to the changing length of the program, by putting
the following statement at the beginning of the program.

10 CLEAR 0: CLEAR MEM-2000

The CLEAR 0 forces all variables to be deleted (if the
program has been running previously during the time is has
been loaded), and therefore allows MEM to be the maximum for
the current length of the program.

It is possible to force a string space compression to be
done any time you choose, by causing the FRE function to be

used. This function will give you a numeric value that is
the amount of FREe string space available when the function
is executed. One of the things that the function does

before calculating available space is to do a compression.
If, for example, you come to a place in a program's
execution where you have finished with the values that are
assigned to the elements of a string array , then you could
set the variables to null and force a string compression
while there are fewer "active" strings to be copied. You
can "exercise" the FRE function by simply setting a numeric
variable that 1is not being used for something else, e.g.,
ZZ=FRE (A$) .

Another general consideration with respect to the string
management process is that it will take longer to do string
compression when there are more strings. When string space
is filled with many short strings, each one has to be
searched for and copied separately. Each element of a
string array counts as one string, and each must be dealt
with individually. If there is an option in the programming
process to use fewer long strings to hold the same
information that might be stored in more short strings, the
string compression will take less time. This difference can
be as much as several minutes under certain circumstances.
(If 1000 strings were changed to 100 longer strings , the
compression time would drop from three minutes to less than
two seconds. -- A. Moluf) But as always, nothing is free; I
did this in a program recently, and found that the time
required to wunpack the short strings from the long ones
consumed a fat chunk of the time I saved on string
compression: now I have a new problem.

4/46

THE ALTERNATE SOURCE Vol. I, No. 4

One last general consideration leads us back to VARPTE:
When a program statement is executed that sets one string
variable equal to another (A$=G$), a copy of the value is
made so that the same value is stored in string space twice
at the same time. If we immediately execute another
statement that sets G$=C$, then one copy of the duplicated
G$ string becomes a "dead" string (Dead G-strings are not
something we need, whether we're playing guitar, writing
programs or watching burlesque). If this is done
repeatedly..., I need not dwell on the consequences.

Suppose we have a program that accepts the input of many
strings from the keyboard, say a list of names, and stores
them in the elements of the array N$. Once the input is
complete, we want to sort the name list into alphabetical
order. If NN is the count of the number of strings that
have been entered, then the following program segment will
do a simple "bubble" sort of the names.

100 FOR K=1 TO NN=-1
110 FOR J=1 TO NN-K
120 IF N$(J) > N$(J+1)
THEN T$=N$(J) : N$(J)=N$(J+1): N$(J+1)=T$%
130 NEXT J
140 NEXT K

Without going into a lot of detail, a bubble sort works by
making successive passes through the array, carrying the
"heaviest" (highest valued) elements to the bottom, and
gradually allowing the "lighter" elements to "bubble up" to
the top. The bubble sort is not a very elegant or efficient
sorting algorithm, and the above implementation can be made
more efficient in several respects, but let's concentrate on
VARPTR.

Notice in line 120 that each time an exchange of elements is
made the value of three strings are changed: the duplicated
copies remain momentarily, then one copy for each of the
three variables becomes a "dead" string. If the list is
long or string space is short,... Since this article has
become more lengthy than I anticipated, I will not repeat an
explanation of the VARPTR technique (outlined in the last
article) that can be used to eliminate the "dead" strings in
this process. If, in the example program statements that
are given in the last few paragraphs of that article, you
change all occurances of A$ to N$(J) and B$ to N$(J+1), then
those statements will work in the above example.

To give a concrete example: Suppose we are sorting 100
names and that these strings use 80% of the available string
space. Executing the statements in the loop (ignoring
string compression) will take about a minute and a half with

4/47

THE ALTERNATE SOURCE Vol. I, No. 4

NN=100. If the names require 2500 exchanges in line 120, we
will generate 7500 garbage strings. Since about 25 strings
will fit in the remaining 20% of space, BASIC will do string
compression about 300 times. Using the formula above, with
S=T=100 and N=0, we get about 2 seconds per string
compression, or 10 minutes for all the string compression,
and 12 minutes for the entire sort. Doubling the available
string space would result in space for 150 garbage strings,
50 string compressions and less than three minutes for the
entire sort. We can get a similar improvement using VARPTR
with no additional string space; the additional statements
needed will require more time to execute, but we will have
reduced string compression time to zero. (A. Moluf)

Before we sign off for the night, let's set up one more
general situation where this technique might come in handy.
Suppose our name-list program has the ability to edit the
list after it has been sorted, by deleting names from the
list or inserting new ones into the list. When we delete,
we want to shorten the list by moving all of the names
following the deleted name up one array element, and
reducing NN by 1. If DL is the array subscript value of the
name to be deleted, then we can do this by

30 FOR K=DL TO NN-1: N$(K)=N$(K+1): NEXT: NN=NN-1

In which case we will create a lot of "dead" strings. Or we
can use

30 FOR K=DL TO NN-1

40 POKE VARPTR(N$(K)), PEEK(VARPTR(N$(K+1)))

50 POKE VARPTR(N$(K))+1, PEEK(VARPTR(NS$ (K+1))+1)
60 POKE VARPTR(N$(K))+2, PEEK(VARPTR(N$(K+1))+2)
70 NEXT K

In which case we create one "dead" string, the one being
deleted. A similar situation exists when we insert a name
into the list, except that the direction of the FOR loop is
changed to move everything down one to make room for the new
name.

NOTE: For an example of VARPTR being used for a completely
different purpose, see Dan Yerke's article in TAS V1, N2
entitled "No Frills",

(Appreciation to Allan Moluf, who supplied much of the "hard

fact" presented above, or pointed me in the right direction
so that I could find it myself.)

4/48

THE ALTERNATE SOURCE Vol. I, No. 4

LINESET

By Victor J. Amor

Unless you've got Radio Shack's Line Printer I, aka
Centronics 779, this program is probably not for you. Most
people I know who do have printers for their TRS-80 Model I
DO use this particular machine, so you're probably included.

But what does this little program or subroutine do, you
ask yourself? Well, the Line Printer I is continuously
adjustable from 10 to 16.5 characters per inch (CpPI), BUT
there are no marks nor clicks nor anything of consequence to
tell you just how many CPI the machine is printing. So out
of frustration was born this program.

The print density means three things: first, at 16.5
CPI, the characters are smallest in size (dots are closest
together) and at 10 CPI, the largest (dots are farthest
apart) . Secondly, at 16.5 CPI, you can get more characters
per line (CPL), thus more lines per page, than you can with
10 CPI. Thirdly, at 16.5 CPI you can print your text faster
than at 10 CPI.

The problem lies in "wrap-around”. On the CRT, when
text cannot all fit onto one line, it is continued onto the
next line, and you haven't lost it. But unless your line
printer is set to 132 characters per 8 inch line, you will
lose some of the text output to the machine if your program
line length or string length is not matched with your CPL.
If your maximum text is 80 characters long and you've got
your machine set to print 80 CPL, you're fine...if not,
you're in trouble.

I use multiple statement lines a lot, and most of the
time I'll have well over 132 characters, so I set my printer
to print 132 CPL. But when I print the names and addresses
on our envelopes, I need a larger character size. In this
instance, I have to set the printer for 90 CPL.

When the program is run and it asks you for the CPL
you'd like, don't be hesitant. Play around with several
possible replies and give them a try. The last two or three
characters printed will be the number you requested,
preceeded by the number of characters you requested LESS the
two or three digits that are used as a "benchmark" (?).
Just adjust until those digits are at the right hand margin
you choose.

Do what you will with the program. It was a solution
to one of my problems; I hope it can help you.

<PROGRAM LISTING NEXT PAGE>

4/49

THE ALTERNATE SOURCE Vol. I, No. 4

LINESET PROGRAM LISTING

1000
1010
1020
1040
1050
1060

1070

1080
1090
1100
1110
1120
1130

1140
1150
1160

(Roy

"LINESET" BY VICTOR J. AMOR
562 H PIIHOLO RD
MAKAWAO, HI 96768

CLS: CLEAR300: GOSUB1060 : PRINT"ALL DONE!": CLEAR50: END
PRINT@512,CHR$(31) : INPUT"HOW MANY CHARACTERS WOULD
YOU LIKE ME TO PRINT"; HOWMANY
IF HOWMANY<10 OR HOWMANY>255 PRINT@832,"BETWEEN 10
AND 255...PLEASE TRY AGAIN": FOR DELAY=1 TO 640:
NEXT DELAY: GOTO1060
HOWMANY$ = MIDS$ (STR$ (HOWMANY) ,2): REM GET RID OF SIGN
LARGA = LEN(HOWMANY$): NUMBER = HOWMANY-LARGA
TEST$ = STRINGS$ (NUMBER,"$") + HOWMANYS$
CLS: PRINT@512,"";: INPUT"HIT <ENTER> TO BEGIN";A$
GOSUB 1160
CLS: PRINT@512,"HIT ANY KEY TO ESCAPE";: PRINT@576,
"THE LAST 2 OR 3 DIGITS WILL BE THE NUMBER YOU
REQUESTED.";
LPRINT TEST$: FOR DELAY=1 TO 200: NEXT DELAY
I$=INKEY$: IF I$="" THEN 1140 ELSE CLS: RETURN
CLS: IF PEEK(14312) <> 63 THEN PRINT@512,
"PRINTER NOT READY...";: FOR DELAY=1 TO 100:
NEXT DELAY: GOTO 1160 ELSE RETURN

Khkhhkkhkhdrd v khkhkinhkhkkhds s

Scott from Newport, TN also has a Centronics Line

Printer Patch users might find very helpful. ed.)

Trying to use the "STRING$(X,138)" function to skip lines on

the
This

Centronics Line Printer has caused me some difficulty.
function works fine, but when using it, only the first

blank line so generated registers on the TRS-80 line counter
that is used to calculate for form feeds.

Therefore, the POKE statements that you use at the beginning
of your program to set the line counters for form feeds must

be

changed to take this into account. Where you would

normally use the following form:

10 POKE 16424,67: POKE 16425,1 (For 8.5 by 11 inch paper)

you would need to use the following form:

10 POKE 16424,67: POKE 16425, (X-Y+1)

where X equals the total number of 138's used in the program
and Y equals the number of STRING$(X,138) statements in the
program. The one (1) merely accounts for the first printing
line in the program.

I hope this information will be of use to some other
readers.

4/50

THE ALTERNATE SOURCE Vol. I, No. 4

LAST MINUTE ODDS & ENDS

OOOOPPS...Forgot a few things here and there:

We forgot to put in a subscription promo! Those
desiring to subscribe should send $9.00 for six issues to
The Alternate Source, 1806 Ada Street, Lansing, MI 48910.
Phone is 517/485-0344 or 517/487-3358. Call anytime.

We should mention that this issue 1is available on
diskette or cassette for $5.00, as are all issues. Send to
address above.)

We are now sponsoring a new service for DOS owners. We
are not encouraging your business, although we are making it
available as a last resort. With the help of our staff and
some local programmers we will attempt recovery of damaged
diskette directories and files. Minimum charge for recovery
is $20, non-refundable and service is non-guaranteed. All
monies goto the person who performs the actual recovery.
While some diskettes can be reclaimed in just a few minutes,
some take hours. Per our agreement, price includes a new
diskette and your original returned exactly as you sent it.
In some instances, only partial files can be recovered,
sometimes to the detriment of other files. You should
clearly state the file that is most important, type of file
(data, BASIC, machine language, whatever), approximate
length and any other information that will prove helpful in
recovery. Please include your phone number. In certain
instances prince may be more and the programmer will want to
verify whether the file is worth the extra time. We aren't
sure if this service is going to be used, but it is there
should you lose an important file and have no one else to
turn to. The one definite instance where recovery will cost
more 1is when the entire directory is overwritten and the
directory will have to be completely reconstructed -- not
usually the situation. We hope you never have to call us.

We've added a brand new program to our library, but
haven't had time to draw up ads yet. It's a program that
will allow you to save machine language files under the
MICRODOS operating system, and it sells for just §$14.95.
Any interested MICRODOS owners can contact us for
information.

And that's all for this issue! Until next time (August
20th, 1980), may the source be with you!!

PAGE 51

AFTERWARD FOR ISSUE 4

This was the kind of issue I had dreamed of putting together a few
months back. On the darker side, we were feeling the pinch for Level II
articles and software.

KILLER was a program Allan Moluf originally provided Central
Michigan TRS-80 Users Group (CMTUG) members, but was kind enough
to let us buy the publishing rights.

Regarding our issues on cassette or disk: They are causing many
problems -- CLOADing for one. The mixture of BASIC, EDTASM
SOURCE and OBJECT for another, and general complaints about
remuneration to authors for yet another. Considering theamount of time
making them, and the few sold, we’re about ready to discontinue the
practice -- even though I would have liked to have seen the project at least
pay for itself.

Apparently no one is killing directories, or everyone has read ”Disk and
Other Mysteries” by this time. We received no response for our offer to
reclaim diskettes.

Two Dollars
Volume 1, Number 5

The magazine of advanced applications and software for the TRS-80.

In this issue:

Let Your Fingers DoTheo 3
Entry ..o e 12
Bit Kickin’ with Jesse Bob i i 24
OUut of SOMSot it i i e 28
Penram ... e e e 31
NEWDOS-80 ReVIEWtiiiitiie et iieiiaenannn e 52

Regular Features
Editorial RAMbling - 2, Source’s Mouth - 50

TRS-80 is a trademark of the Tandy Corporation.

The Alternate Source Vol. I, No. 5

Editorial RAMbling

By Charley Butler

Are you a hacker? Find out for sure by reading the
August Psychology Today. Two great articles relating to
some of our breed, The Hacker Papers and The Age of
Indifference.

Just witnessed PerCom's new DBLDOS working with their
double density board and Radio Shack's drives. 1It's a real
fine feeling to see your meager 35 trackers come back with
120 grans when you do a "FREE". Forty track folks will have
about 160 FREE grans. For us, this system appeared just in
time -- our mailing lists were testing the limits of 35
track drives. I will mention that the sample demonstrated
is an actual production model and NOT a prototype! Shipment
of these boards, complete with DBLDOS, should be well
underway by the time you read this. We have had a quantity
of these boards on order for a couple months. If you would
like more information, give me a call. The first two out of
the box are reserved for our systems !

Sorry about all the lengthy articles this issue. Hope
you find at least a couple that are suitable for your
applications. Roxton Baker's PenRam and Jason Potter's
Entry are part of larger systems, but each make excellent
stand-alone applications. Al Domuret provides the first
extensive review of NEWDOS-80, what is supposed to be the
first in a three part series analyzing and comparing
NEWDOS-80 with VTOS. Unfortunately, VTOS 4.0 has yet to
arrive. The patches for NEWDOS-80 are the first we've
seen...including the mythical ZAP sheets from Apparat.
Thomas Frederick further elaborates on Bill Brown's string
manipulation techniques -- a real time saver for those bulky
applications. Dennis Kitsz continues his winning ways with
"Let Your Fingers Do The...". Dennis is the winner of our
issue #3 contest and wins the 25 bucks. For participation,
Patricia Bryan, Douglas Clark and John E. Fisher are winners
of $10.00 certificates. Don't forget to vote for your
favorite author in this issue! A postcard will do.

TAS is published bimonthly by Charley Butler and Joni
Kosloski at 1806 Ada Street, Lansing, MI 48910.
Subscriptions are $9.00 per year, USA; $12.00 per year,
CANADA and MEXICO; and $15.00 dollars per year FOREIGN. Aall
monies must be in good ol' US currency. Subscriptions may
be addressed to the above. We actively solicit meaningful
articles and information relating to Tandy's TRS-80 and
compensate for each article published. Call or write for
more info., Entire contents is Copyright (c) 1980 by The
Alternate Source unless copyright notice is declared by
individual authors.

Page 2

The Alternate Source Vol. I, No. 5

khkhkhkkkhhhkhkhhhhkhkhkhkhhhhkhkhhkkhhhhhhhhkkkhhhhhkhhdhhhkk

LET YOUR FINGERS DO THE.....

% Ok % ¥ % % %

*
*
*
The Keyboard Scan of the TRS~-80 *
*
By Dennis Bathory Kitsz *

*

*

kkhhhhhkkhhhhkdohhhhhhhkhhhhhhhhkhhhhhhdhrhhhhhhhhdird

(You know, it's a little bit funny. We got a call from a
fellow who was praising the quality of articles within our
magazine, and he happened to mention that he was Jjust a
little bit tired of seeing so many articles on the keyboard
scan. And what should we get in the mail the next day? You
guessed it! This article, though, is the most
comprehensive we've seen; it not only tells you about the
scan, but also what you can do with it. We feel many
readers will benefit from the discussion and ideas Dennis
presents here. jmk)

Arrows? Control codes? Autorepeat? Whatever it is
you would like that has to do with the keyboard, you can do
with the TRS-80. The designers of the machine chose not to
use an ASCII keyboard...one that outputs a code for each key
pressed; instead, the keyboard is a matrix of switches.
Because of this decision, the TRS-80 keyboard can be
extremely versatile with a minimal body of software. In
this issue, we will look at the TRS keyboard scanning
routine and next time offer a few changes (improvements, T
like to call them) to it.

First, we will have a look at the keyboard matrix
itself; if you have been programming in machine language, or
even relatively sophisticated BASIC, this map will be
familiar:

Address
3801 @ A B C D E F G
3802 H I J K L M N (e}
3804 P Q R S T U v W
3808 X Y Z
3810 0 1 2 3 4 5 6 7
3820 8 9 : ; y - . /
3840 ENT CLR BRK + 3 « - SPC
3880 SHIFT
DATA———> 01 02 04 08 10 20 40 80

5/3

The Alternate Source Vol. I, No. 5

At first, the arrangement of the address lines and data
information may seem unappealing. What is the use of having
address and data information that doubles at each change?
Why not just use 3801, 3802, 3803, and so on? The reasons
will eventually become apparent in the ease and speed of the
keyboard scan, but consider this binary for a moment....

00000001 00000010 00000100 00001000
00010000 00100000 01000000 10000000

+..and there you have it. The bit is bumped along for
each keyboard row and column, so that the presence of a
single active bit instantly identifies any of the
(potential) 64 keys.

The entrance to the keyboard scan is made at a jump
from an address in the ROM's RAM switchboard, 4016 (unless
otherwise noted, all data and address notations are in hex) .
Normally at power up, the jump address 03E3 is put in place,
and the keyboard scan is entered at that point. Registers
BC, DE, HL and A are used in the scanning process:

03E3 21 36 40 LD HL,4036
03E6 01 01 38 LD BC, 3801

The HL register pair points to first RAM location at which
the keystrokes will be stored. BC is set to look at the
first row of the keyboard, whose memory map is 3801 to 3880,
as noted earlier. Register D is set to zero, and it will
become a "row counter”; the process begins at address 03EB:

03EB oA LD A,(BC)
03EC 5F LD F,A

The accumulator reads the data at BC (recall at the outset
it is pointing to the first keyboard row, 3801). The
information it finds is stored in the memory location
pointed to by HL (4036).

Okay so far. Now comes some of the interesting stuff
that distinguishes this scan as an excellent piece of
writing:

03ED AE XOR (HL)
03EE 73 LD (HL),E
03EF A3 AND E

03F0 20 08 JR NZ,03FA

This short segment is responsible for the "rollover"
capabilities of Level II. The contents of the accumulator
(the keystroke, if found) is XORed with the previous
contents of 4036. Recalling how the XOR function works, we

5/4

The Alternate Source vol. I, No. 5

discover that if the key pressed was the same as the
previous one at this row, the accumulator will be "toggled"
to zero. In any case, the current keystroke, whatever it
is, is now saved in 4036 (so that next time 'round, it knows
if a key is still pressed).

If the key was the same, AND E will be the result of
A-toggled-to-zero AND the found keystroke...or zero. If
there was no key pressed, the result will be A-XORed-with-HL
(which is essentially irrelevant) AND E-which-is-zero...or
zero. The test at O03F0 is for not zero. Under these
conditions, it fails, so the program continues:

03F2 14 INC D
03F3 2C INC L
03F4 CB 01 RLC C
03F6 F2 EB 03 Jr P,03EB
03F9 Cc9 RET

The "row counter" (D register) is incremented, and the
low-order byte of HL is incremented (to storage address
4037) , and the low-order byte of BC is rotated. Recalling
the keyboard matrix, we can see that this command to rotate
moves us from 01 to 02, from 02 to 04, from 04 to 08, from
08 to 10, etc. That keeps track of the row that the scan is
looking at, and as long as the result of the rotate is
positive (bit 7 low), the loop will +travel back to O03EB,
where the next row will undergo the same testing as each
previous one. When RLC C shifts the row pointer to 3880,
then bit 7 will be high (10000000); this is "negative" in
Z-80 architecture, and the loop falls through. Why does it
fall through before checking the contents of address 388072
Because the only thing in this row is the shift key; it does
not offer a decipherable code by itself, but merely modifies
the information found when some other key 1is depressed.
This explains why, among other peculiarities, INKEY$ does
not acknowledge SHIFT.

When the loop falls through, the program encounters a
RETurn from subroutine, which directs it immediately back to
the rest of BASIC. The routine 1is remarkable, looping
through just over 100 bytes when the keyboard 1is clear.
Although not as time-efficient as obtaining input from a
memory-mapped ASCII keyboard, it is quite speedy, and offers
considerably better "rollover" than many encoded keyboards.

When a key is pressed, the program jumps to O03FA, and
is able to provide upper/lower case ASCII codes, special
functions, and, incredibly enough, all of the "missing”
ASCII control codes (form feed, ring bell, etc.). Let us
now follow it through:

5/5

The Alternate Source k Vol. I, No. 5

03FA 5F LD E,A
03FB 7A LD A,D
03FC 07 RLCA
03FD 07 RLCA
03FE 07 RLCA
03FF 57 LD D,A

The position of the keystroke found has been stored in
register E; recall that this is the "column" of the
keystroke. The row itself is not yet accessible, but the
row counter (register D) is crucial to determining it.
After E is saved, the accumulator is loaded with the value
in this row counter, and rotated to the left three times.
For those shaky in their binary arithmetic, this is the
effect: if a decimal number is 045, a left rotate makes it
450. This is multiplication by ten. If a binary number is
010 (decimal 2), a left rotate gives 100 (decimal 4)...in
other words, multiplication by two. Therefore, three left
rotates gives wus 2x2x2, or multiplication by eight. That
result is saved back in register D.

The purpose of this clever ploy will soon become clear:

0400 0E 01 LD C,01
0402 79 LD A,C
0403 A3 AND E

0404 20 05 JR NZ,040B

Here the C register 1is set to 1, sucked up by the
accumulator, and ANDed with E (remember E still contains
that keystroke-column byte). If the result is not zero
(that is, if E equals 1), then the loop falls through and
the program moves on. But have a look at what follows:

0406 14 INC D
0407 CB 01 RLC C
0409 18 F7 JR 0402

What is this about? Well, the D register, which
contains 8 times the row value, is being incremented each
time C is being rotated...making the lower three bits of D
serve now as a c¢olumn counter! Whoa, you say, back up
there. Okay, here it is. The original wvalue in D could
have been 0 through 6, depending on the row in use. When
shifted three times, the possible values become 00, 08, 10,
18, 20, 28, and 30. Each of these possible values, when
incremented through all seven possible columns, might
contain 00 to 07, 08 to OF, 10 to 17, etc., up to 37. This
gives us a complete, distinct value to represent each key.

Now a fairly crude process of byte-sized hunt-n-peck
begins. The status of the SHIFT key is checked, and set

5/6

The Alternate Source Vol. I, No. 5

aside in register B. The de-multiplexed keystroke value in
register D is snapped back into the accumulator, and the
comparisons take off:

040B 3A 80 38 LD A,(3880)
040E 47 LD B,A
040F 7A LD A,D

The character search can be followed through several
branches; we will start with the most straightforward, and
progress through some of the unique (and little publicized)
aspects of TRS-80 keyboard output.

The program sets the character equal to character plus
40 (address 0410), and checks if the value is greater than
or equal to 60 (0412).

CHAR + 40 is @ A B C D E F G

less than 60 H I J K L M N O

(40 + 00 to 1F) | P 9 R S T U V W
) X Y z

char + 40 is 1 0 1 2 3 4 5 6 7

60 or greater gt 8 9 : ; , - . /

(40 + 20 to 37) J ENT CLRBRK t ¢ & - SPC

If the compare finds a value less than 60, the routine
rotates the SHIFT key value which had been saved in the B
register (0416). If SHIFT is released, the value in B is
zero, and hence the rotate resets the carry flag (0418).
The program moves directly to the terminal steps at 044B (to
be discussed later). At that point, the character contained
in A would be in the range 00+40 to 1F+40, the ASCII values
for wupper case (@, A-Z, left bracket, separator, right
bracket, carat, and cursor). This is the software routine
that causes the bizarre "inverted" shift pattern on the
TRS-80...no shift for upper case!

If the character test at 0412 returns a value greater
than or equal to 60, then 70 is subtracted (0429). No carry
is generated if the test value was greater than or equal to
70, so this further separates the keyboard. See the diagram
below:

5/7

The Alternate Source Vol. I, No. 5
60 to 6F minus 70 0 1 2 3 4 5 6 7
carries; result 8 9 : ; R - . /
is F0 to FF
70 to 77 minus 70 ENT CLR BRK * ¥ « -» SPC
does not carry;
result is 00 to 07

At address 043D, the value in the accumulator (00 to

07) is rotated left, producing the even values from 00 to
O0E. The SHIFT byte in B is rotated right into the carry
flag; if a carry is generated, the accumulator value is

incremented (0442), providing the values 0+1, 2+1, 4+1, etc.
-- in other words, the odd values from 01 to OF.

What follows is a classic example of machine language
table look-up. HL is set to 0050, the address of the table
in ROM; BC will be used as an offset, with B set to 0 and C
is made equal to A. When BC is added to HL, a resultant
address (0050 to 005F) is produced, and the contents of that
address are loaded up by the accumulator. Here is a look:

0443 21 50 00 LD HL,0050
0446 4F LD C,A
0447 06 00 LD B,0
0449 09 ADD HL,BC
044A 7E LD A, (HL)
044B 57 LD D,A
What do we find at 0050 to 005F? ASCII control codes!
That result is stored in the D register (044B) before the

termination sequence.

Address Contents TRS-80 Action
0050 0D Carriage Return
0051 0D Carriage Return
0052 1F Clear Screen
0053 1F Clear Screen
0054 01 Break

0055 01 Break

0056 5B Up Arrow

0057 1B Edit Escape
0058 0A Line Feed

0059 1A *See text

005A 08 Backspace

005B 18 Backspace Line
005¢C 09 Horizontal Tab
005D 19 32-Character Mode
005E 20 Space

005F 20 Space

ASCII Description

Keyboard Entry

Carriage Return
Carriage Return
Unit Separator
Unit Separator
Start of Heading
Start of Heading
Left Bracket
Escape

Line Feed
Substitute
Backspace

Cancel
Horizontal Tab
End of Medium
Space

Space

ENTER

SHIFT ENTER
CLEAR

SHIFT CLEAR
BREAK

SHIFT BREAK

Up Arrow

SHIFT Up Arrow
Down Arrow

SHIFT Down Arrow
Left Arrow

SHIFT Left Arrow
Right Arrow
SHIFT Right Arrow
Space

SHIFT Space

5/8

The Alternate Source vol. I, No. 5

Alright, we have upper case ASCII and TRS-80 control
functions. How about the rest? Back up now to the test for
SHIFT, at 0416. If such a shift is present, the value in A
(40 to 5F) is increased by 20 (60 to 7F). These are the
ASCII codes for lower (@, a-z, left brace, separator, right
brace, ~, delete). The resultant code, as usual, is saved
in D.

But what follows is curious:

041D 3A 40 38 LD A, (3840)
0420 E6 10 AND 10
0422 28 28 JR Z,0444C

The keyboard is tested again, this time at row 3840,
data position 10 - the down arrow. If that key is not
depressed, the program skitters right to the termination
routine at 044C, with the lower case ASCII code ensconced in
the D register.

Why the SHIFT/down arrow combination? If the down
arrow 1is depressed, the value in D is retrieved and placed
in the accumulator (60 to 7F), then reduced by 60, becoming
... aha! ... 00 to 1F. The program jumps to the end
sequence, with the accumulator clutching one of the complete
set of 32 ASCII control codes!

So where are we now? Upper and lower case, TRS-80 and
ASCII control codes. We need numbers and figures, and so we
shall have them. Recall the second diagram; at 042B, the
command row was separated from the numbers, which were left
as FO to FF. At 042D, 40 is added, resulting in possible
values of 30 to 3F. A further separation is made via a
comparison with 3C:

30 to 3B | 0o 1 2 3 4 5 6 7|

i R 9 : ; ' . - . -/

If the comparison is less than 3C, a carry is
generated. The wusual SHIFT test is made (at 0435), and if
it fails, the value in A (30 to 3B) is maintained as the
program moves into the end routine. These are the ASCII
codes for numbers 0 to 9, colon and semicolon.

If the test value is 3C, 3D, 3E, or 3F, no carry would
be generated at 042F, and these values are XORed with 10.
This toggles the high nibble from 3 to 2, resulting in
values from 2C to 2F (,-./). If a shift key was noted at
0437, the same toggle procedure is followed, changing values
FO(t? 38 ;nto 20 to 2B (these would become space ! " # $ % &

5/9

The Alternate Source Vol. I, No. 5

Here is how the code looks:

042D cé 40 ADD A,40
042F FE 3C CP 3C

0431 38 02 JR C,0435
0433 EE 10 XOR 10
0435 CB 08 RRC B

0437 30 12 JR NC,044B
0439 EE 10 XOR 10
043B 18 OE JR 044B

Thus, the coding is complete: control codes (00 to
1F) , punctuatior (20 to 2F), numbers and figures (30 to 3F),
upper case (40 to 5F), and lower case (60 to 7F). Just as
an aside, the terms lower and upper case are sometimes
written small and large case; old-time printers would
chuckle at that. The "case" referred to are printers cases,
which, stacked one above the other, contained the capital
and small letters. Thought you might like to know that.

Back to the routine, starting at the termination
sequence (044C); the decoded character is saved in D, and
that is the only information we need to preserve, since the
bulk of the work is done.

044cC 01 AC OD LD BC,0DAC
044F CD 60 00 CALL 0600
0452 7A LD A,D

A delay at 0600 is called, which was intended to wait
through the normal bounce present in any type of mechanical
contact -- but inappropriate for the easily dirtied switches
on the TRS-80. This delay uses the accumulator, and when it
is free, the value in D is restored to it. This value is
compared to 01 (the BREAK code), and returns directly to the
main routine (0455) with any code other than BREAK.

If BREAK is discovered, the program executes a call to
0028 (RST 28 -- more on that another time), finally
returning to Level II.

The routine is quite efficient, and, in less than 64
keys, is capable of returning 128 values at a rate of better
than 100 per second -- ten times the speed of the world's
fastest typist!

Next time we will take a brief look at some of the
improvements to this scan that can be patched in at address
4016, including a debounce which is better than Radio
Shack's KBFIX (it keeps up with speed typists), and a very
good autorepeat sequence.

5/10

The Alternate Source Vol.

I,

ALPHA BYTE STORAGE

is wheelin’ and dealin’!

Printers?
We stock 15 different kinds of dot matrix
printers. We stock the 3 best letter quality

printers — Dec, Qume and Diablo. Check our
prices before you make your final decision!

Supplies?

We'll supply you with computer paper, print
wheels, labels, forms, print thimbles, and much
more!

Diskettes?

We're never undersold! Dig up the best price
you can find on 5%"” Verbatims — then give us
a call!

Software? Books? Miscellaneous?

We'd like the opportunity to chat with you
about your current needs. And we'll help you find
the best deal we can. Give us a call with your
interests, or write for a free catalog!

D Ripha
4636 Park Granada
@ BIJIF.' Calabasas, CA 91302
Storage 1-213-883-859

5/11

No.

5

The Alternate Source Vol. I, No. 5

ENTRY
A Test Analysis and Grading Program

By Jason K. Potter

(Jason has played a major part in getting computers
accepted in schools in the local mid-Michigan community. He
quite frequently comes up with little gems and says: "Hey,
see what one of my students did!". I mostly just sit back
and burn with envy.

The following is a portion of a much larger data
management system Jason has developed for maintaining and
manipulating his own student records. The program stands
quite well on its own. The part that really impresses me
about the system is how subjective factors can be
synthesized into the raw data. Too often we 1let the
objective qualities of a computer rule the outcome of our
projects, instead of simply using our machine as a tool.

This application may not be directly applicable to your
needs, but Jason is using many techniques that could apply
to your own data manipulation. cwb)

One of the most time consuming activities for the
secondary teacher 1is the correction and scoring of various
assignments, tests, and guizzes. Once the test has been
corrected, the scores are often converted to percentage
scores and a grade selected for converting scores to a
letter grade. These grades or the percentage scores are
then entered into the grade book in alphabetical order and
later averaged with other grades to produce the final grade.

Although some educators and concerned persons have
opposed the use of conventional grading systems for
describing student progress, the practice continues for the
following reasons: 1) Parents and students desire them, 2)
they serve as a motivational factor, 3) and they provide a
succinct method of communicating progress.

This article describes a program which I have used for
the last three years, in a variety of forms. It has greatly
reduced the time required to process and record the results
of student assignments, tests and quizzes. I originally
wrote the program as one module of a comprehensive record
keeping system for the TI-59 programmable calculator. It
has been rewritten for the TRS-80, both 16K cassette and for
32K with one disk drive. The program following this article
is written specifically for a 32K one drive system;
interested Level II wusers can write to myself or The
Alternate Source for a modified listing. Persons interested
in using GSF for the sort routine can also write to obtain

5/12

The Alternate Source Vol. I, No. 5

the proper patches to the program listing.

Before discussing the program, it is necessary to
describe some common methods of assigning grades to student
work. One common method used with written or essay tests is
to simply go by the overall impression and directly assign a
letter grade to the test as a whole or to its parts. This
method has the disadvantage that the grades given often are
as much a result of the attitude and mental state of the
teacher as a measurement of student performance. They also
tend to be wunreliable and difficult to defend to the
questioning student or parent.

Probably the most commonly used method is to assign
points for correct or partially correct answers, to total
them and convert them to a percentage score. Many teachers
then assign letter grades to the percentage scores according
to a scale which has 90 to 103% equal to an "A", 80 to 89%
equals a "B", and so on. This method has the advantage that
the student knows the score needed to obtain a specific
grade and may be motivated to greater effort by grades below
what he considers adequate. The disadvantage of this method
is that, while it seems to set an absolute standard, in
reality the teacher usually manipulates the scale by trying
to write tests so that student scores fall into an
acceptable grade range. If performance on a test produces
an unusually high number of "A" grades, the next test will
tend to be a little harder.

A variation of the above method is to set an upper
value which is equal to an "A" and a lower cutoff value
which is equal to an "E" (or "F" depending on the school),
and spread the grades out evenly between these values. This
method has the advantage of allowing the teacher to
compensate for the effects of an unexpectedly difficult
test.

Another commonly used method of assigning grades is to
assume that the statistical distribution of scores is
approximately normal, and assign grades according to where
the scores fall on the 'normal curve'. Two terms used in
applying this method are 'mean' and ‘'standard deviation’'.
The mean of a set of scores is equal to the sum of the
scores divided by their number. It gives the approximate
center of distribution. (It is also known as the average.)
The standard deviation of a set of numbers is a measurement
of their wvariability or spread around the mean. It is
numerically equal to the sum of the squared differences of
the scores from the mean score. If a set of scores are
normally distributed, about 70% of them will be within one
standard deviation of the mean.

5/13

The Alternate Source Vol. I, No. 5

The ‘'curve' grades assigned more often in college
courses are assigned according to a scale by which the
average score receives a grade of "C" and the difference
between letter grades is approximately equal to one standard
deviation. Thus about 70% of the students will receive a
grade of "B", "C", or "D". About 7.5% will receive a
failing grade and 7.5% will receive an "A" grade. This
method is not satisfactory in most cases, because most small
classes are not normally distributed in ability or
achievement, and the class may have a higher percentage of
above average students or below average students. This
would result in an injustice being done to one of the groups
mentioned.

The above method may be made more fair by using some
estimate of student ability, such as the grade point
average, for the center of the scale and adjusting the
spread around that central score to compensate for classes
with more or less variability in ability. Information to do
this may be obtained from student records or transcripts or
may be estimated from past experience. A problem with using
the 'curve' method of grading is that, in my experience,
students tend to rely on other students' doing poorly enough
to produce a low grading scale, rather than striving to meet
a high standard. The result is a deterioration of
performance over time.

It is possible to gain the advantages of both absolute
scales anc the 'curve' method by calculating the grades both
ways and then averaging them. Thus, a student may have
received a score of 65% on a very difficult test. According
to the straight scale, this would be equal to a "D" grade.
Because of the difficulty of the test, however, his was the
highest score. According to most curve scales, he would
receive a grade of "C+" or "B-". Thus he would get credit
for having the best scsore in the class, but would also be
penalized somewhat for getting such a low score on the test.
The effect of using this method is to still require nearly a
90% score for an "A", but to spread the scale downward
somewhat for especially difficult tests. It gives students
a high standard to shoot for, but compensates for student
ability and difficulty of tests.

It goes almost without saying that all of the above
methods, especially the latter, require much computational
effort and time. The microcomputer is ideally suited to
solving this problem and making the latter method of grading
practical.

5/14

The Alternate Source vVol. I, No. 5

The program "ENTRY" allows the following:

1. Names and scores may be entered in any order.

2, Descriptive statistics, such as the mean,
standard deviation, highest score, lowest
score, a reliability coefficient for the test,
and a measurement of how far off a particular
score may be from the "true" value (obtained
from many tests over the same material), are
calculated and printed out.

3. Choice of any of the above mentioned methods
of grading.

4. Calculation of letter grades for all student
scores according to the scale chosen.

5. Prints a list of names, scores, grades, and
the grade scale used on the screen or on

paper.
6., Saves the file produced on disk for later
additions or for wuse with the program

"RECORDS", which maintains student cumulative
averages and keeps an updated average of each
student's progress. This program is available
through The Alternate Source.

In order to allow you to visualize the use of this
program, let's go through a hypothetical session with it.
The program will first ask if this is a new file. If it is,
respond with "y", The program will then ask for a
description of the assignment or test being graded. This
may be up to one line long and may contain commas, etc. it
will then ask for a field heading five characters long for
the grade list. The date will then be asked for, and
instructions will be given for the entry of test scores.

Names are entered as shortened name codes, consisting
of the first four letters of the last name, and the initial
of the first name. This is to save time in data entry and
to provide a standard format for use with the student
cumulative records program (available separately). The
score or number correct is then displayed. The 1last entry
may be deleted by typing the word "DELETE" in response to
the next "NAME" prompt.

When the last score has been entered, the word "END" is
entered and the program goes on to calculate descriptive
statistics for the test, which can then be used to set up a
grade scale., These statistics are the mean score, the
standard deviation, the highest score, the lowest score, the
reliability coefficient, and the standard error of
measurement. The reliability coefficient is how consistent
the score would be on retesting with the same test. A score
near 1.0 indicates a very high reliability, a score near

5/15

The Alternate Source Vol. I, No, 5

zero indicates a very poor test. A typical value for a
teacher made test would be 0.6; for a standardized
achievement test it would be around 0.9. The standard error
of measurement is an estimate of the expected amount of
variation in an individual score on retesting with the same
test.

The program then asks a series of questions which lead
to the selection of a grading scale. It is possible to
select any of the scales discussed above.

Once the desired scale is selected and the necessary
information supplied, a grade scale will be calculated and
printed and the teacher is given the chance to try another
scale. The variable Z' stands for the average letter grade
on a scale from 0 to 4.5 if this grade scale is used. The
variable Sz' stands for the standard deviation of the letter
grades 1if this scale is wused. A typical value is seven
tenths (.7).

When a scale is finally selected, it will be applied to
all of the student scores. 'The list will then be sorted
alphabetically and either printed out to the screen or
printer. It may also be saved to diskette.

When saving the file to disk, the program will ask for
a file name. It is possible to overwrite a previous file by
giving the name used previously, or to write a new file by
using a new name. The file can be retrieved for addition or
printing by answering "N" to the quesiton "NEW FILE?" at the
beginning of the program, and then responding with the
filename in question when asked.

This program, as written for DOS users, requires 32K of
memory and will handle up to 100 test scores. It may be
redimensioned for larger numbers by making changes in lines
1000, 1260, and 1270. The program is also adaptable for use
with a Level II 16K computer, with files being stored on
tape. This involves a certain degree of unreliability and
increased waiting time, but works just as well if the list
is printed out immediately.

For further information on testing, grading and
statistical analysis of test scores, the reader is referred
to the excellent book "Testing and Evaluation for the
Sciences in the Secondary School"” by William Hedges,
Wadsworth Publishing Company, Belmont, CA. For further
information on Level II listings or GSF patches, my address
is Jason Potter, Haslett High School, Haslett, MI, 48840.

5/16

The Alternate Source Vol. I, No. 5

CHEMISTRY TEST IONIC BONDS

MARCH 25, 1980

NUMBER NAME CODE RAW SCORE % SCORE GRADE
1 AMWAY 29 64 1.45
2 ASIMI 38 84 3.15
3 BOHRN 34 76 2.47
4 BORNM 38 84 3.15
5 BURGT 31 69 1.87
6 GAUSS 40 89 3.57
7 JONES 36 80 2.81
8 KEPLJ 39 87 3.40
9 MENDR 35 78 2.64
10 MILLE 39 87 3.40
11 MILLR 33 73 2.21
12 NEWTI 38 84 3.15
13 OLSDR 36 80 2.81
14 PILSA 43 96 4.17
15 POPPM 36 80 2.81
16 ROENL 38 84 3.15
17 SWIFJ 28 62 1.28
18 TOBRU 25 56 0.77
19 WILSR 31 69 1.87
20 WOOLD 39 87 3.40
SUMMARY :

AVERAGE SCORE = 78.45 ST. DEVIATION = 10.1743
HIGHEST SCORE = 96 LOWEST SCORE = 56

KR-21 RELIABILITY = .65155 ST. ER. OF MEAS. = 6.005

GRADE SCALE CALCULATION

3AV = 78.45 $SD = 10.1743 Z' = 2.6766 Sz' = .86589
4.5 = 99.875
4.0 = 94.000
3.5 = 88.125
3.0 = 82.250
2.5 = 76.375
2.0 = 70.500
1.5 = 64.625
1.0 = 58.750
0.5 = 52.875
0.0 = 47.000

5/17

The

"EN

Alternate Source Vol. I, No. 5

TRY" Program Listing

310
320
330
340
350
360
370
380
390
400

410
420
430

440
450

CLEAR 2000
REM ***%%%%% STUDENT RECORDS PROGRAM ****kkkxkk
REM
REM TITLE BLOCK
REM DRAW RECTANGULAR BLOCK
CLS:PRINTE@ 69, STRING$(54,191)
PRINT@ 901, STRING$(54,191)
FOR I=133 TO 837 STEP 64: PRINT@ I, STRING$(4,191);:NEXT I
FOR I=183 TO 887 STEP 64: PRINT@ I, STRING$(4,191);:NEXT I
REM
REM PRINT BOX CONTENTS
PRINT@ 207,"CLASS RECORDS MAINTENANCE PROGRAM";
PRINT@ 341, "DATA ENTRY MODULE (2.1)";
PRINT@ 470, "COPYRIGHT FEB.9,1980";

PRINT@ 600, "JASON POTTER";

PRINT@ 725, "HASLETT HIGH SCHOOL";
PRINT@ 852, "PRESS ANY KEY TO CONTINUE";
REM

LET A$=INKEY$:IF A$="" THEN 190

CLS

PRk Ak Xk hkkhkhhkhkhh DATA ENTRY MODULE **%%%dkdkdkkkkhkkddrdrsk

CLEAR 2000

DEFINT C,E-K,M,W

LET N=1:LET SX=0:LET X2=0:LET XM=0:LET XL=100
DIM SN§$(100),5(100),P(100) ,W$(100) ,W(100) ,L(100)
DIM D$(100) ,D(100)

CLS

INPUT "IS THIS A NEW FILE";A$

IF LEFT$(A$,1)="N" THEN GOSUB 2480

LINE INPUT "NAME OF FIELD - ";TN$

LINE INPUT"FIVE LETTER ABBREVIATION FOR FIELD HEADING";T1$

IF LEN(T1$)<>5 THEN 340
LINE INPUT "DATE - ";D$
INPUT "HIGHEST POSSIBLE SCORE";M
-— INPUT TEST RESULTS—==m=——e————
CLS
PRINT"

TO ENTER SCORES, FIRST TYPE IN THE FIRST FOUR LETTERS OF
THE LAST NAME AND THE FIRST LETTER OF THE FIRST NAME.
E.G., BILL WILSON = WILSB"

PRINT"
TO DELETE THE LAST ENTRY, TYPE 'DELETE'."

PRINT"
WHEN YOU ARE DONE ENTERING SCORES, TYPE 'END'."

INPUT SN$(N)

IF SN$ (N)="DELETE" THEN 570

IF SN$(N)="END" THEN 740 ' CALCULATE STATISTICS

5/18

The

Alternate Source Vol. I, No. 5

(continued...)

460
470
480
490

500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
200
9210

930
9240
950

IF LEN(SN$(N))<>5 THEN 390
INPUT "SCORE";S(N) : PRINT CHR$(29)
IF S(N)>M THEN PRINT "BAD SCORE-TRY AGAIN"
IF S(N)<0 THEN PRINT
"NEGATIVE SCORES NOT ALLOWED-TRY AGAIN"
IF S(N)>M OR S(N)<0 THEN 470
LET P(N)=INT(S(N)/M*100+.5)
GOSUB 620
PRINT SN$(N) ,S(N) ,P(N);"s"
LET N=N+1
PRINT :PRINT "(";N;")";
PRINT "NAME?";:GOTO 430
REM ***%%%** DELETE LAST ENTRY khkkhkkhkkkk
LET N=N-1
GOSUB 700

————————————————— DESCRIPTIVE STATISTICS--=======
REM ACCUMULATE INTERMEDIATE STATISTICS

LET SX=SX + P(N)
LET X2= X2 + P(N) [2

REM~----~ MAX , MIN , RANGE

IF P(N) >XM THEN LET XM=P(N)
IF P(N) <XL THEN LET XL=P(N)
RETURN

REM========m——=n DELETE LAST X
LET SX=SX-P(N)
LET X2=X2-P(N) [2

RETURN

e e e STATISTICS CALCULATIONS======—-
LET N=N-1

REMe—— = = e o e o e CALCULATE AVERAGE

LET AV=SX/N

REM———— == e s CALCULATE STANDARD DEVIATION
LET SD=SQR((X2-(SX[2)/N)/(N-1))

REM—~== == e e CALCULATE KR-21 RELIABILITY

RA=AV/ 100 *M:RS=SD/100*M
R=(M~RA) *RA
R=(R/M) /RS[2
R=1-R
R=R* (M/(M-1))
IF ®1 THEN LET R=1
REM— oo e o o e e PRINT STATISTICAL SUMMARY
CLS
PRINT TAB(20) ;"ANALYSIS OF SCORES" :PRINT
PRINT "AVERAGE SCORE =";TAB(35);USING "##.#";AV; :PRINT"%"
PRINT "STANDARD DEVIATION =";TAB(35);
USING "##.#";SD; :PRINT"3"
PRINT "LOWEST SCORE =";TAB(34) ;USING"###.#";XL; :PRINT"%"
PRINT "RELIABILITY COEFFICIENT =";TAB(36) ;USING"#.##";R
PRINT "STANDARD ERROR OF MEASUREMENT =";TAB(35);
USING "##.#";SQR(1~R) *SD; :PRINT"%"

5/19

The Alternate Source Vol. I, No.

(continued...)

960

970 PRINT

980 INPUT"DO YOU WANT TO USE AN ABSOLUTE GRADE SCALE? (Y/N) ";A$

990 IF A$="N" THEN 1180

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220

1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380

1390
1400
1410
1420
1430

INPUT "STRAIGHT SCALE; E.G. 90-100%=A,ETC. (Y/N)?";:A$
IF A$="N" THEN 1080
ZA=2:SZ2=1:X1=75:52=10
GOSUB 1300
FOR I=1 TO N
GOSUB 1700
NEXT I
GOTO 2850
REM——==—mm o e m OTHER SCALE
INPUT "LOWER CUTOFF SCORE FOR 0 GRADE";XE
INPUT "SCORE WHICH EQUALS A GRADE OF 4.0";XA
GOSUB 1740
LET X1=AV:82=SD
GOSUB 1300
FOR I=1 TO N
GOSUB 1700
NEXT I
GOTO 2850
REM———— = e GRADE ON CURVE OR COMBINATION==—mmmwm
INPUT" 'CURVE' GRADE (Y/N) ";A$
IF A$="N" THEN 1480

REM~=—~====w GRADE ON NORMAL CURVE OR ADJUSTED FOR ABILITY
INPUT "AVERAGE GRADE=2.0; STANDARD DEVIATION OF GRADE= 1?

(Y/N)" ;A%
IF A$="N" THEN 1390
LET ZA=2:5Z=1:X1=AV:S2=SD

GOSUB 1300

FOR I=1 TO N

GOSUB 1700

NEXT I

GOTO 2850

REM-~~=—~ CALCULATE AND PRINT GRADE SCALE===———-
CLS

PRINT TAB(25) "GRADE SCALE"
?:?"%AV=";AV,:?"%SD=“;SD,:?"Z'=";ZA,:?"SZ=“;SZ,:PRINT
FOR Z=4.5 TO 0 STEP -.5

LET X=(2-2A)/S2*S2+X1

PRINT Z,X

NEXT Z

INPUT "TRY ANOTHER SCALE?(Y/N) ";A$:IF A$="y"

THEN 960 ELSE RETURN

REM-====mm CURVE ADJUSTED TO DESIRED MEAN AND S,D.==mmm=

INPUT "DESIRED AVERAGE GRADE THIS TEST"; ZA
INPUT "DESIRED STANDARD DEVIATION OF GRADE" ;S2
LET X1=AV:S2=SD

GOSUB 1300

5/20

The Alternate Source vol. I, No. 5

(continued...)

1440 FOR I=1 TO N

1450 GOSUB 1700

1460 NEXT I

1470 GOTO 2850

1480 REM *** GRADE SCALE BASED ON AVERAGE OF CURVE
AND STRAIGHT SCALE ***

1490 INPUT "ESTIMATED CLASS GPA";ZA

1500 INPUT "ESTIMATED S.D. OF GPA";SZ

1510 LET X=20 ' CALCULATE LOWER CUTOFF VALUE FOR SCALE

1520 LET Z=ZA +SZ*(X-AV)/SD

1530 LET 2=(2+ (2+((X-75)/10)))/2

1540 IF Z>=0 THEN 1560

1550 LET X=X+1: GOTO 1520

1560 LET XE=X

1570 LET X=110 ' CALCULATE SCORE EQUAL TO 4.0 GRADE

1580 LET 2=ZA+SZ*(X-AV)/SD

1590 LET Z=(2Z+(2+((X-75)/10)))/2

1600 IF 7Z<=4 THEN 1620

1610 LET X=X-1 :GOTO 1580

1620 LET XA=X

1630 GOSUB 1740

1640 LET X1=AV:S2=SD

1650 GOSUB 1300

1660 FOR I=1 TO N

1670 GOSUB 1700

1680 NEXT I

1690 GOTO 2850

1700 REM LETTER GRADE CALCULATION SUBROUTINE

1710 L(I)=2A+SZ*(P(I)~X1)/S2:L(I)=INT(L(I)*100+.5)/100

1720 IF L(I)<=0 THEN LET L(I)=.01

1730 RETURN

1740 REM ==mmm—————m CALCULATE AVERAGE AND S.D. OF LETTER GRADES

1750 ZA=4* (AV~XE) / (XA-XE)

1760 SZ=4*SD/(XA-XE)

1770 RETURN

1780 REM=m—===——=—=== PRINT SORTED LIST=m====—=————m—————

1790 INPUT "DO YOU WANT THE LIST PRINTED IN THE ORIGINAL
ORDER(Y/N) " ;A$

1800 IF A$="Y" THEN 2050

1810 INPUT "PRINT ALL(A),RANGE(R), OR SAVE TEST FILE";A$

1820 IF A$= "S" THEN 2300

1830 IF A$ ="A" THEN 1860

1840 IF A$= "R" THEN 1950

1850 GOTO 1810

1860 REM==—-——~= i PRINT ALLm=rmm=m———————————

1870 CLS

1880 PRINT "RESULTS OF ";TN$:PRINT

1890 PRINT "NUMBER","NAME","$","GRADE"

1900 FOR I=1 TO G

1910 LET F=W(I)

1920 PRINT I,SN$(F),P(F),L(F)

5/21

The Alternate Source Vol. I, No. 5

(continued...)

1930
1940

1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420

NEXT I i
INPUT "TRY ANOTHER SCALE?(Y/N)";A$:IF A$="y" ¥
THEN 960 ELSE 1780 !
REM=====—m——m—— PRINT RANGE====m=w————— e :
INPUT "LOWER BOUND OF RANGE";A

INPUT "UPPER BOUND OF RANGE";B

CLS :PRINT "RESULTS OF ";TN$:PRINT

PRINT "NUMBER","NAME","%","GRADE"

FOR I=A TO B

F=W(I)

PRINT I,SN$(F) ,P(F),L(F)

NEXT I

GOTO 1780

REM==m=—m——— - PRINT IN ORIGINAL ORDER===m=m————u
INPUT "PRINT ALL(A) OR RANGE(R) ";A$

IF A$="R" THEN 2200
IF A$="A" THEN 2100

GOTO 2060
REM~====m e PRINT ALL-===mmm=m—mm
INPUT "WANT SUMMARY PRINTED ON LINE PRINTER";A$

IF LEFT$(A$,1)="Y" THEN GOSUB 3150
CLS

PRINT "NUMBER","NAME","%","GRADE"
PRINT

FOR I=1 TO N

PRINT I,SN$(I),P(I),L(I)

NEXT I

GOTO 1780

REM ==-m—e—e——— PRINT RANGE======———=m
INPUT "LOWER BOUND OF RANGE";A

INPUT "UPPER BOUND OF RANGE";B
LS

PRINT "NUMBER","NAME","$","GRADE"
PRINT

FOR I=A TO B

PRINT I,SN$(I),P(I),L(I)

NEXT I

GOTO 1780

REM====—— e e RECORD DATA FILE=====-=mccmm——n
LINEINPUT"OUTPUT FILE NAME? ";FI$: OPEN"O",1,FI$
PRINT#1,TN$:PRINT#1,T1$:PRINT TN$,T1$:PRINT#1,D$:PRINT D$
PRINT#1,N

D(1)=X2:D(2)=AV:D(3)=R:D(4)=M:D(5)=N
D(6)=RA:D(7)=RS:D(8)=SZ:D(9)=SD:D(10)=SX
D(11)=ZA:D(12)=5Z:D(13)=XL:D(14) =XM

FOR I=1 TO 14:PRINT#1,D(I) :NEXT

REM===~RECORD NAME LIST==w==-

FOR I=1 TO N:PRINT#1,SN$(W(I)) :NEXT

REM ===mm RECORD RAW SCORE ARRAY-----
FOR I=1 TO N:PRINT#1,S(W(I)) :NEXT
REM —-=mm-m RECORD % SCORE ARRAY=—--——

5/22

The Alternate Source Vvol. I, No. 5

(continued...)

2430
2440
2450
2460
2470
2480
2490
2500
2510

2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940

FOR I=1 TO N:PRINT#1,P(W(I)) :NEXT
REM—----RECORD LETTER GRADE ARRAY~----
FOR I=1 TO N:PRINT#1,L(W(I)) :NEXT
REM END OF FILE
CLOSE: END
REM=m——=mm RETRIEVE TEST DATA---—-—=-=
LINEINPUT"INPUT FILE NAME? ";FI$: OPEN "I1",1,FI$
INPUT "WHEN READY PUSH <ENTER> KEY";A$
LINE INPUT#1,TN$:LINE INPUT#1,T1$:PRINT TN$,T1$:
LINE INPUT#1,D$:PRINT D$
INPUT "IS THIS THE CORRECT FILE";A$
IF LEFT$ (A$,1)="Y" THEN 2570
PRINT"LOAD PROPER DISKETTE AND TRY AGAIN...";: GOT02490
GOTO 2510
v

INPUT#1,N

FOR I=1 TO 14 :INPUT#1,D(I) :NEXT

X2=D(1) :AV=D(2) :R=D(3) :M=D(4) :N=D(5)
RA=D(6) :RS=D(7) :S2=D(8) :SD=D(9) :SX=D(10)
ZA=D(11) :82=D(12) :XL=D(13) : XM=D(14)

REM==—===—- RETRIEVE NAME LIST=~==———

FOR I=1 TO N:INPUT#1,SN$(I) :NEXT
REM~~=== RETRIEVE RAW SCORES====—=

FOR I=1 TO N:INPUT#1,S(I) :NEXT

REM=====- RETRIEVE % SCORES======——=

FOR I=1 TO N:INPUT#1,P(I) :NEXT

REM~= ==~ RETREIVE LETTER GRADE ARRAY=———-—-

FOR I=1 TO N:INPUT#1,L(I) :NEXT

REM END OF FILE

PRINT "ALL DATA RECOVERED": CLOSE

REM~-~ALL DATA RECOVERED==--

REM——===——m=- PRINT RECOVERED DATA~==—==-=

PRINT "NAME","RAW SC.","$% SCORE","GRADE"

FOR I=1 TO N

PRINT SN$(I),S(I),P(I),L(I)

NEXT

INPUT "DO YOU WANT TO ADD MORE SCORES?(Y/N)";A$
IF A$="Y" THEN LET N=N+1: GOTO 400

INPUT "DO YOU WANT A LIST OF DESCRIPTIVE STATISTICS?";A$
IF A$="Y" THEN 760

INPUT "ASSIGN A DIFFERENT GRADE SCALE?(Y/N)";A$
IF A$="Y" THEN 960

RETURN

LET G=N

FOR I=1 TO G

W(I)=I:W$(I)=SN$(I)

NEXT I

GOSUB 2960

REM==—=m=———— PRINT OR RECORD ON TAPE~=====—=—=

INPUT "DO YOU WANT A PRINTOUT OF THE RESULTS?(Y/N)";A$
IF A$="N" THEN 2300

GOTO 1780 =======> Listing continued, pg. 65

5/23

The Alternate Source Vol. I, No. 5

Bit Kickin' with Jesse Bob

Nestled in the fertile plains of North Texas near the
town of Carrollton, the Circle J Software Ranch occupies
180,000 microacres of prime bit grazing land. Owned and
operated by the legendary Jesse Bob Qverholt, the famed
Circle J herd of over 90,000 bits produces fine software for
TRS-80's all over the world.

In this issue we had hoped to print a picture of Jesse
Bob in response to many requests. Unfortunately, he was on
location for the shooting of 'Urban Bitboy' and we were
unable to get a picture. It will be included in the next
issue.

Here is the latest batch of questions received along
with Jesse Bob's responses. Send your questions to Jesse
Bob in care of The Alternate Source, 1806 Ada Street,
Lansing, Michigan 48910.

Dear Jesse Bob,

The information that you gave 'Tense in Toledo' last
issue for determining whether a disk was write-protected or
not was great, and it really helped me a lot. I still have
another problem, though, whenever I accidentally try to
access a disk drive which doesn't have a disk in it.
Usually, the drive motor turns off and I wind up in a
'Silent Death' situation. The only solution is to reboot.
Do you have any tricks that can help me?

Also, can you tell me who shot J. R.?

Waiting in Wyoming

Dear Waiting,

The old 'missing diskette' problem can be a real killer
alright. Here is a subroutine that Billy Fred, one of our
top wranglers, wrote to determine the status of a disk drive
before trying to access it. Just copy this routine into
your program, set 'DN' to the number of the drive +to be
tested (0-3), and call the subroutine (via GOSUB) BEFORE
trying to access the drive.

BILLY FRED'S SUBROUTINE
50000 'SUBROUTINE TO REPORT THE STATE OF THE DISK DRIVE

WHOSE DRIVE NUMBER IS SPECIFIED IN VARIABLE 'DN'.
IT RETURNS THE STATUS IN VARIABLE 'DS' WITH THE

5/24

The Alternate Source Vol. I, No. 5

FOLLOWING VALUES:
50010 0 = THE DRIVE IS READY AND CONTAINS A DISK,
WHICH MAY BE WRITTEN ON.
THE DRIVE IS READY AND CONTAINS A DISK,
WHICH IS WRITE-PROTECTED.
THE DRIVE DOES NOT CONTAIN A DISKETTE.
THE DRIVE EITHER DOES NOT EXIST, OR IT
CONTAINS A DISK AND THE DOOR IS OPEN.
50030 IF DN<O OR DN>3 THEN DS=3
RETURN

1

50020 2
3

nou

50040 SV& = 1
IF DN>0 THEN FOR X%=1 TO DN
SVE=SV5+SV%
NEXT X%
0050 POKE 14316,208
: FOR X%=1 TO 100
POKE 14305,SV%
NEXT X%
PV%=PEEK(14316) AND 2
0060 FOR X3=1 TO 100
POKE 14305,SV%
CV$=PEEK(14316)
IF (CV% AND 2) <> PV% THEN 50080
50070 NEXT X%

Ut ce os os

ss s a0 Ul es oo e &

: DS=2

: IF CV% AND 2 THEN 50090
ELSE DS=3

: GOTO 50090

50080 DS=0

: IF CV% AND 64 THEN DS=1
50090 RETURN

Lines 50030 - 50040 validate the drive number and
construct the select value (SV%) for that drive. Line 50050
resets the disk controller, starts the motor, and waits for
the drive to come up to speed. It also saves the value of
the index pulse bit in the disk controller status register
(Pv%). 1In line 50060 the drive is constantly reselected to
keep the motor going. Each pass through the loop checks the
status register for a change in the index pulse bit. If no
change is detected, the loop runs out and falls into 50070.
Here DS is set to 2 (no disk in drive). If the index pulse
bit of the status register was constantly on we may deduce
that there was no diskette blocking the sensor, so the drive
is empty. Otherwise all we know is that the disk is either
absent or contains a disk with the door open.

If the index pulse bit changes (meaning that a disk is
in the drive and it is turning) we go to line 50080 where DS
is updated to a value of 1 if this condition exists.

Unfortunately, I have no idea who shot J. R. Ewing.

5/25

The Alternate Source Vol. I, No. 5

Southfork, the Ewing ranch, is on up the road a good bit, on
the other side of the Oleo Ranch (one of your cheaper
spreads) . My own personal theory is that J. R. is so mean
that he shot himself!!

Jesse Bob

Dear Jesse Bob,

You are my last resort! For several months now my
computer has been acting 'flakey’. It reboots from time to
time and occasionally the memory forgets. I have gone
through four sets of RAaM chips trying to get it straightened
out, but nothing seems to help. Radio Shack has checked
both the keyboard and the Expansion Interface thoroughly and
says they are fine.

The problem seems to be more serious on hot days when I
run the air conditioner, but filtering the power 1line
doesn't seem to help. Any suggestions?

Anxious in Angola

Dear Anxious,

Your problem is more common than you might think. 1In
recent research here at the ranch, we found several of our
Expansion Interfaces had improperly adjusted five~volt
regulators. One system has less than four and a half volts
on the five volt supply. This causes many of the circuits
in the Interface, including the Disk Controller, to operate
hear to or outside of the tolerances they were designed for.
Sudden memory drops in the line voltage (such as that caused
by an air conditioner turning on) can cause chips to behave
erratically.

The solution is simply to adjust the five volt power
supply so that exactly Ffive volts is present on the
Expansion Interface bus. To do this You need a calibrated
voltmeter, preferably either digital or high-impedance type.
This type of equipment is usually owned only by hardware
hackers (the guys with solder splashes on their shoes who
draw schematic diagrams on napkins)., If you are not able to
get one, the best thing to do is have your local Radio Shack
Computer Center check the voltage and adjust it for you.

Jesse Bob

() -—

5/26

The Alternate Source Vol. I, No. 5

Dear Readers,

In Issue #4 a Poke was given to ‘'Puzzled in Los
Angeles' to solve the problem of printed output 'walking'
down the page. Unfortunately, the value given in the POKE
was wrong and would result in printout moving UP the page
instead of down, which is hardly a solution. The correct
statement should read "POKE 16424,66" instead of "PCKE
16424 ,64". My deepest apologies for this error.

As you may know the weather in Texas has been
unusuallly hot this Summer. Heavy use of air conditioners
has resulted in frequent power fluctuations. The result has
been that many of our "1" bits have been transformed into
"0" bits, which are worthless. Those of you who 1live East
of the Mississippi can help us out. Whenever you find
yourself facing Southwest, how about flapping your Level II
manual gently up and down. The resulting breeze may help
cool us off a bit.

Until next time keep those cards and letters coming and
remember -- Murphy's Law is only a theory. It has never
been proven korrect!

Jesse Bob

Copyright (c) 1980 by the Circle J Software Ranch

l THE
INNOVATIVE PENGUIN
] Presents
2 FRED
(the friendly robot educator)
Appearing in
SKETCH-A-SOUND
A game that allows you to hear your drawings.
What does the 1812 Overture sound like?
MUL-TI-SOUND

Teachers, Parents, Help at last!
A painless multiplication drill!

Watch for Fred and the
Penguin as they
continue to bring you
programs that make

dreary memorization §

into fun. Sound makes
the difference!

Check with your local computer store or send §
$14.95 for each 16K level 2 program to:
THE INNOVATIVE PENGUIN

2320 Hampton Dr., Harvey, La. 70058
Dealer and educator inquiries invited

5/27

META-TREK

This is NOT your average star-trek
game! Meta-Trek requires 32K and one
disk drive, and features several never-
before-incorporated missions! You'll
be dodging black holes and meteor
storms, contemplating time warps
and dealing with sensor-zapped
quadrants! You'll have the help of your
computer (which resembles a TRS-80
remarkably) and a detailed report on
your standings. but this one still isn't
easy! There is a FREEZE command
though, to aliow you to save your pro-
gress to disk. An excellent plot, with
excellent graphics to match! Fast,
too, with embedded Z-80 routines
This one's $19.95 and comes on
diskette with an orientation manual
well worth it! We've already enjoyed
hours and hours, and have many more
to go!

Order from The Alternate Source,
1806 Ada Street, Lansing, M| 48910
or by phoning (517) 485-0344 or
487-3358.

The Alternate Source Vol, I, No. 5

OUT OF SORTS??

By Thomas Frederick
ABS Suppliers

As many of you know, the Level 1II Interpreter has a
peculiar way of handling strings. Of particular interest is
what the 'garbage collection' routine does to affect sorting
string array data. This 1is, according to Radio Shack's
Microcomputing News (March/April 1980) "...is a computer
controlled operation which allows the TRS-80 to recover
previously used string space in memory. If you are sorting
a large number of strings, 'garbage collection' can consume
a significant portion of your (string) sorting time."

The Memory Management of Basic was covered in depth by
T.R. Dettman in the 80-U.S. Journal (p. 28 Nov/Dec 1979) so
I will avoid being redundant. Some indirect schemes have
evolved to 'overcome' this obstacle to sorting strings. One
of them uses the VARPTR statement to overcome the sudden
death of your computer when sorting strings. Put simply,
VARPTR is used to find the pointers of the strings and sort
them -~ rather than the strings themselves, to avoid the
loss of your computer when the memory management routine
occurs.,

I have been using a slightly different method for some
time now which I consider to be more elegant, easier to
understand by all new folks, and faster than the VARPTR
scheme -- which also has no loss in computer sort time.

To get a better handle on the problem, enter the
following program EXACTLY :

10 CLEAR50: REM1 DIM Q$(2000), W$(2000)
20 FORJ=0TO9: INPUT A$(J): NEXT J

30 FORJ=0T09: PRINT "A$(" J ")=" A$(J),: NEXT J
40 LO = PEEK(16598) : HI = PEEK(16599)
50 PRINT: FOR J = 0 TO 9

60 2% = A$(J)

70 REM2 POKE 16598,L0: POKE 16599 ,HI
80 B$(J) = z$%

90 PRINT "B$(" J ")=" B$(J)

100 NEXT J

110 GOTO 50

When you first RUN this, enter two characters in
response to the INPUT statement when it is encountered in
line 20. You'll find that using an AM radio next to the
keyboard will be invaluable in 'listening' to the CPU,

5/28

The Alternate Source Vol. I, Ho. 5

You'll alsc notice that the printed output on the video
is a 1little 'jerky' while it's running. Now EDIT line
number 10 and delete REMI1. Running the program again
produces a different result -- with the computer going into
its sudden death or ‘'garbage collection' routine. By
deleting the REM1 and including the DIM statement, we get
our FIRST CLUE about what's going on.

If you edit line 10 again, so that you CLEAR 150
(instead of just 50), and run the program again, you'll find
that the output is somewhat different (as dramatically
evidenced by your AM radio. If you aren't using one, better
get one quick! Otherwise you'll be missing the boat
(actually it's the garbage truck, not the boat.)).

Change 1line 10 to read CLEAR 50 again. Also edit the
size of the dimensions of the strings to 200 (instead of
2000) and run the program again. You'll notice a difference
in program execution when you run it with a SMALLER string
array size. CLUE NUMBER TWO just slipped under your nose!

It turns out that the size of the CLEARed space and the
size of the string arrays are directly (or proportionately)
related to the amount of time the computer will waste in its
garbage collection routine. When Z$ is referenced in the
program as an assignment, the free string space pointer
(16598/16599) is wupdated to the next chunk of free memory.
This occurs until it runs out of space set aside or CLEARed
for strings. When this happens, what I believe occurs is,
Basic goes to where the string arrays are stored and steps
through them to determine where the free string space
defined by the CLEAR statement starts. This is the space
immediately below the STRINGS that are part of the STRING
ARRAYS themselves. This is where the time is consumed -- by
the Level II interpreter 'looking' at all the string
pointers to determine where the start of free memory is.

Now when you're using a sorting procedure, say a Bubble
Sort, you're testing or comparing a value in a list to the
next value in the list (value + 1) to find out if value + 1
is less than value. If it isn't, then you shift your
attention to the list and compare value + 1 to value + 2 and
so forth. However, if value + 1 is lower (less than) value,
you want to swap the contents of value with value + 1.

To achieve this swap, we need a temporary storage area
for holding one of the wvalues (just 1like 2$ in the
accompanying program example) while we do the switch. This
could take the following format: 2$ = value value = value
+ 1 value + 1 = 2$., Everytime we use Z$, depending on the
length of the string temporarily stored (0 to 255
characters) the free string space pointer is decremented to

5/29

Ihe Alternate Source Vol. I, No. 5

point to the next free chunk of memory. In a sorting
procedure, Z%$ is referenced many times by assigning it
different values -- with an accompanying decrementing of the

free string space pointer. Larger strings in 2$ eat up
CLEARed memory faster -- run the program inputting two
characters, then run it again inputting four characters.
Compare the effect. The AM radio tells all.

It is this reason the sorting algorithm using VARPTR is
faster. It sorts the pointers to the strings instead of the
strings themselves. This results in no free string space
being eaten up, but is difficult to easily understand.

Get the values in line #10 back to their original ones
(CLEAR 50, DIM (2000)) and RUN the program again. When
you're satisfied that things are in a state of 'disfunction'
in your computer, press the break key. You may have to hold
it down; BREAK is NOT acknowledged while this 'garbage
collection' routine is occuring.

Although the accompanying program does not contain an
algorithm, it is intended to demonstrate what happens during
a sorting procedure =-- that being the rapid consumption of
free string space by repeated reference (by assignment) to
Z$. It is only intended to simulate the effect of sudden
death brought on by a string sort.

Now we'll move into high gear. Take line number 70 and
delete REM2. Run the program again, still entering two
characters in response to the INPUT statement in line 20.
You'll notice a DISTINCT IMPROVEMENT in program execution.
What we have done here is ‘'reset' the free string space
pointer after using Z$, and eliminated the need for garbage
collection. The use of this method is not critical in its
placement either, but a specific procedure must be followed
to be successful.

This method for overcoming the string space compression
routine in Basic is FASTER than using VARPTR (Poke occurs
before VARPTR in the Level II Reserved Word Table), it also
uses LESS MEMORY than the currently used VARPTR scheme, and
finally, it's MUCH SIMPLER TO UNDERSTAND:

1. 1Insert a program line immediately before the
for-next loop containing the sorting algorithm
to save the contents of the pointers; similar
to the following code: LO = PEEK(16598): HI =
PEEK(16599).

2. Somewhere within the body of the for-next

loop, insert the following code to reset the
pointers: POKE 16598,L0: POKE 16599,HI.

5/30

The Alternate Source Vol. I, No. 5

PENRAM - A SCROLLING RAM EDITOR

Public Domain Software by Roxton Baker
56 South Rd. Ellington, Ct. 06029
(203) 875-2483

INTRODUCTION

I recently needed a program that would allow me to quickly
examine large portions of RAM and easily change what I found
there, working either in ASCII or hex. This ability is
required when editing data or text (as opposed to machine
code) in memory, because with these one has no idea at what
address a particular byte may be. In my case I wished to
scan and modify whole disk tracks which had been read in to
RAM. Tracks never read the same way twice so the locations
in memory of ID packs, sector boundaries, etc. are
unpredictable.

The available monitors for the TRS-80 are, however, written
with the intention of editing hex machine language programs,
in which byte locations are well defined. These monitors
require you to specify in advance the addresses to edit, and
generally allow editing only in hex, and scanning only in
one direction.

This is too clumsy when working with data. Two-directional
scanning would improve matters, but one still must read off
addresses of interest and re-enter them under the edit
command. I greatly prefer the Electric Pencil's editing
action. Not only does it provide +true scrolling in both
directions, but its blinking cursor can be positioned with
the arrow keys and anything typed at the cursor location
replaces what's there. But the Pencil is not used for
editing RAM. It works on its own text files.

PENRAM, presented here, is a machine-language utility that
provides Electric Pencil-like editing directly in RAM.
Two-way scrolling can be done at low or high speed and the
movable edit cursor allows direct input of hex bytes or
ASCII characters (the mode can be toggled at a keystroke).

A continuous display is maintained of the edit cursor's
"address" as well as it's displacement from a reference
address that the user may fix. Users of the Electric Pencil
should understand that PENRAM does not allow true insertion
or deletion of bytes of code; it merely lets you write over
what's already there. A compromise has been made between
editing power on one hand and length (already 1100 bytes)
and ease-of-use on the other.

5/31

The Alternate Source Vol. I, No. 5

PENRAM can be used as a stand~alone utility, called from
Basic via USR or SYSTEM, or patched onto your favorite
monitor as a replacement for its editing function.
Instructions for appending it to RSM-2 and TBUG are given
later. Furthermore, PENRAM is in the public domain. You
may incorporate it into any program you write, commercial or
otherwise, without royalty arrangements. Author credit is
the only request.

CREATING THE PROGRAM

The source code for PENRAM is given in Fig. 1. By omitting
most of the comments (and using the tab key to space right)
the program will fit in a 16K machine using the Radio Shack
tape Editor Assembler, or Microsoft's new EDTASM-PLUS. Or
it may be entered into any of the disk Assemblers. To avoid
the typing, contact The Alternate Source. They have kindly
agreed to make the uncommented source code available on
tape, at cost.

PENRAM may be assembled at any location by changing the
STARTP address near the beginning. Allow a total of 1100
bytes for the code. PENRAM also uses a little of the stack
space of the program that calls it; this is normally of no
concern.

Once assembled PENRAM may be used by itself or it may be
called by another program. The START address is also the
entry point. When exited PENRAM executes a RETurn
instruction so it should be called in such a manner that
this return is meaningful. This will always be the case if
PENRAM 1is called as a subroutine, or if it is entered from
DOS. If PENRAM is called via the SYSTEM or USR commands in
Basic, it may be preferable to jump on return to addresses
06CCH or 0A9AH, respectively. To achieve this, change the
instruction at RETLBL near the beginning of the source code
from:

from RET Z
to JP Z,nn

where nn might be 06CCH for example. This jump takes three
bytes as opposed to the one byte RET, so omit the two NOP's
immediately afterwards. The code will still be 1100 bytes
long. You may of course add more code at this point to
clear the screen before returning, etc. You should assume
PENRAM modifies all registers except IY.

5/32

The Alternate Source Vol. I, No. 5

USING PENRAM

On entry, or whenever you press shift/LEFT-ARROW, PENRAM
will request an address at which to start the display.
Enter a four-digit hex address (or just press <ENTER> to
quit). A hex display of the 256 bytes of memory beginning
at that address will appear on the screen. You may change
this to an ASCII display by pressing CLEAR. Another CLEAR
takes you back to hex. The blinking edit cursor will be in
the upper left corner. You move it using the four arrow
keys =-- any scrolling required is automatic. At any time
you may enter data at the current cursor position. In the
hex mode two hex characters (0-F) are required; in the ASCII
mode any printable character may be entered (except arrows).
The characters entered will replace the current byte at that
location. You may BREAK after entering only one hex
character in which case the original byte is restored. All
data changes are seen instantly on the screen. Most keys
repeat so that you may easily fill memory with a value, and
high-speed scrolling is provided with the shift/UP-ARROW and
shift/DOWN-ARROW keys.

On the right side you will see continuously displayed as:
> nn <

the actual address of the byte that the edit cursor is next
to. This makes it easy to read off addresses of interest,
without counting. Below that will be shown the value of the
current reference address and (in decimal) the displacement
of the edit cursor from it. The reference address is
updated to the current edit cursor position whenever you
press shift/BREAK. To understand the use of the reference
address feature, imagine that you wish to move the cursor
287 (decimal) bytes beyond where it is. You would press
shift/BREAK to set the reference address to the current
position of the edit cursor, and then you would move the
cursor downwards while watching the displacement value to
see when you'd reached 287.

ATTACHING PENRAM TO A MONITOR

The addition of PENRAM will complement the editing features
of a good monitor program such as RSM-2 from Small System
Software. It will completely transform the editing of a
simple monitor 1like T-BUG., Patching PENRAM to either of
these is easily done. RSM-2 provides a "U" (user-definable)
command that will access PENRAM. Under T-BUG the normal "M"
editing command is replaced. In the following instructions
all addresses and values are in hex.

5/33

The Alternate Source Vol. I, No. 5

The 48K version of RSM-2 is assumed. For 32K, subtract 4
from the first hex digit of each address or value marked
"*"_ Thus *E7B3H for 48K becomes A7B3H for 32K. Similarly,
*FFH becomes BFH. For 16K, subtract 8 instead of 4.

Assemble PENRAM at *E7B3H by setting STARTP in the source
code to this wvalue. Load the resulting object code into
memory. Load and run RSM-2. Using the E-command of RSM-2,
change the code at address:

*EEA6H from 00 to 7F
*BEEB1H from 32 80 *FF to 00 00 0O
*FF80H from C9 00 00 to C3 76 *E7

At this point the new monitor program PENRSM resides from
*E7B3H to *FFFFH, with entry point *EE94H. You may write it
out to tape with the P-command, or on a disk system you may
go to DOS with G402D and use TAPEDISK or the DUMP command to
put PENRSM/CMD on disk,

Adding PENRAM to T-BUG is also easy. A Level II non-disk
machine 1is assumed. Assemble PENRAM at 4980H and load the
object code into memory there. Load and run T-BUG. Use its
M-command to carefully change the two bytes at address
440EH :

from 32 45
to 80 49

Use X to break from the editing mode. The new monitor
program PENBUG now resides from 4380H to 4D0S9H, with entry
point 43A0H. Immediately, before doing anything else, punch
it out to tape with the P-command. Under PENBUG the
M-command will access PENRAM; shift/LEFT-ARROW <ENTER>
returns. It may also be necessary to press X on return to
get the # prompt.

Attaching PENRAM to other monitors can be done as in the
case of T-BUG. Locate the call or jump used when the edit
command is invoked and replace it with a call to PENRAM.

HOW PENRAM WORKS

Those interested in modifying or extending PENRAM will need
to know something of the program structure. Refer to the
source code listing at the end of this article. PENRAM
operates by keeping track of three important addresses,
which will be referred to by the names of their storage
locations (which are unimportant). This is not strictly
correct, but it's easier to read:

5/34

The Alternate Source vol. I, No. 5

1) HOMADD, the address that is displayed in the
upper-left (home) corner.

2) EDCUR, the current location in video memory
(3CO0H~3FFFH) of the edit cursor.

3) BYTED, the actual address of the byte pointed
to by the edit cursor.

The screen is initially filled with 256 bytes of memory
starting at the hex address input by the user. This address
is the first value of HOMADD. The edit cursor is positioned
at the first byte displayed. From there it can be moved 15
spaces to the right and/or 15 lines down, without causing
any scrolling. * A count (stored in RGTCUR) is kept of how
many spaces to the right the cursor is moved. A similar
count (in DWNCUR) is kept of how many lines down it is
moved. PENRAM begins each cycle of its operation at UPDATE
by calculating, from RGTCUR and DWNCUR, the present address
EDCUR of the edit cursor. It simultaneously calculates
(from HOMADD, RGTCUR, and DWNCUR) the value of BYTED so that
it knows to which byte in memory the edit cursor is
pointing.

Once these values have been found, PENRAM displays the
address stored at BYTED as the > nn < value mentioned
earlier. It also displays the current reference address,
called ATADD, and subtracts it from the BYTED address to
find the present displacement. Available ROM routines are
used to conver this displacement to decimal, and it too is
displayed.

With this done, PENRAM goes into a keyboard scan 1loop at
KBDSCN. It remains in this loop, blinking the edit cursor,
until a key is pressed. The cursor blink rate is determined
by BDELAY, and the graphics character used for the cursor is
defined by CURCHR. Either of these may be changed before
assembly.

When a key is pressed, PENRAM goes to KPRESS and takes
action as follows:

1) If a shifted up~ or down-arrow key, PENRAM
immediately checks the value of DWNCUR and
modifies it or scrolls the the screen, as
appropriate. This is discussed in more
detail below.

2) If the shift/LEFT-ARROW key PENRAM com-

pletely restarts by jumping back to its
ENTRY point.

5/35

The Alternate Source Vol. I, No. 5

3) If the shift/BREAK key, PENRAM immediately
sets ATADD equal to BYTED, thus updating
the reference address, and returns to
UPDATE so that the new value will be dis-
played.

4) 1If an unshifted arrow key, PENRAM enters a
debounce delay loop and then processes the
key by updating RGTCUR or DWNCUR and scroll-
ing the screen if necessary. See below.

5) If the CLEAR key, PENRAM changes the type-
of-display flag HATYPE from hex to ASCII or
vice-versa, redraws the screen and restarts
the cycle.

6) If a valid hex character and in the hex mode,
PENRAM remembers the entry, delays briefly for
debounce, and awaits the next hex character.
When that is received PENRAM forms the new byte
and writes it into BYTED. Then it steps the
edit cursor right one space by jumping to the
same place (DORT) that a right-arrow would have
taken it.

7) If a valid ASCII alpha-numeric and in the ASCII
mode, PENRAM writes it into BYTED and then
steps the edit cursor right as is (6).

The delay values used for the debouncing are specified as
KDELAY1 and KDELAY2. You may wish to increase them if you
experience keybounce.

The cursor movement referred to above as resulting from the
arrow keys is coded in routines DOUP, DODN, DOLF, and DORT.
These can be generally described as follows. If the user is
not attempting to move the cursor off-screen then PENRAM
just translates the arrow keystrokes into appropriate
changes in RGTCUR and DWNCUR, and returns to UPDATE to begin
the next cycle.

When the cursor is moved beyond the edge of the screen,
scrolling must take place. This is done by shifting the
current contents of the screen up (or down) by one line,
updating HOMADD, and writing one new line at the bottom (or
top) . RGTCUR and DWNCUR are also changed as required.
PENRAM then returns to UPDATE to begin the next cycle.

The detailed comments in the source code may be referred to
for further information.

5/36

The Alternate Source

PENRAM Listing

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510

NE Ne e e e N wE W Ne Ne e e W % we

Ne Ne Mo Ns s e N W we we N

Vol. I, No. 5

kkhhhhhhhhkhkhkhhhkhkhkhhhhhhhkhkhhkhkhhkhkhkhhhhhhhhhhkhkhhhhdohhhhkhhk

>>>>> PENZRAM <KL

A SCROLLING RAM EDITOR UTILITY

COMMANDS :
'CLEAR'
'BREAK'

SOFTWARE IN THE PUBLIC DOMAIN

VERSION 2.0

BY ROXTON BAKER
56 SOUTH RD.
(203) 875-2483

ELLINGTON,

CT.

khkkhkhkhkhhkhkhhkhkhkkhkhhhkhhhhhhhhkhkhhkhkhhhhhhhhrhhhhhhhhhkkhhhk

06029

CHANGES TYPE OF DUMP (HEX/ASCII).

BREAKS FROM ERRONEOUS HEX ENTRY.

'SHIFT/BREAK' SETS REF. ADDRESS = CURRENT ADDRESS.

'SHIFT/UP~ OR DOWN-ARROW SCROLLS RAPIDLY.

'SHIFT/LEFT-ARROW' ALLOWS NEW STARTING ADDRESS.
(REPLY <ENTER> TO LEAVE PENRAM)

'START

TARTP

w (D~ ~e e

; SYSTEM ROUTINES AND LOCATIONS

PI

EQU

PENRAM CAN BE RELOCATED BY CHANGING THE VALUE OF

ALLOW 1100 (044CH) BYTES TOTAL.

0E7B3H

;FOR LINKING WITH RSM48.

KI EQU
CLS EQU
CURPOS EQU
KIBUF EQU
LINEIN EQU
BYTDIS EQU
DELAY EQU
NTF2 EQU
NUMSTR EQU
’

; CONSTANTS
KDLAY1 EQU
KDLAY2 EQU
BDELAY EQU
BLANK EQU
CURCHR EQU

002BH
01C9H
4020H
4036H
05DSH
0033H
0060H
0A9DH
OFBDH

2500H
1200H
0AOH
80H
8AH

5/37

;INPUTS ASCII BYTE
;CLEARS SCREEN

;POS'N OF STD. CURSOR
;WORKSPACE FOR KI

; INPUTS WHOLE LINE
;PRINTS ASCII BYTE

;14.6 USEC PER COUNT BC
;DENOTES INTEGER VALUE

; CONVERTS NUM. TO STRING

;MAIN INTER-KEY DELAY

;AUX DELAY REGULAR CHAR.
;SPEED OF CURSOR BLINK
;BLANK GRAPHICS BLOCK .
;DEFINES CURSOR CHARACTER .

The Alternate Source Vol. I, No. 5

(continued...)

00530 ; KEYBOARD INPUT VALUES =-=~-

00540 CLEAR EQU 1FH

00550 BREAK EQU 4

00560 SHFBRK EQU 5

00570 SHFTUP EQU 9

00580 SHFTDN EQU 17

00590 SHFLFT EQU 21H

00600 UPAROW EQU 5BH

00610 DNAROW EQU 02H

00620 LFAROW EQU 08

00630 RTAROW EQU 09

00640 ;

00650 ;KEYBOARD SCAN ADDRESSES =--

00660 KEYS1 EQU 3801H ;@-G KEYS

00670 CNTL EQU 3840H ; DETECT CONTROL KEYS
00680 SHCNTL EQU 38COH ;SAME BUT SHIFTED

00690 SHIFT EQU 3880H ;0 HERE MEANS NO SHIFT
00700 ;

00710 ; STORAGE LOCATIONS =---

00720 STRPLC EQU STARTP+2 ;STORES STRING TO PRINT
00730 STORAG EQU STARTP+66

00740 ADDR EQU STORAG ;ADDRESS TO PRINT NEXT
00750 HOMADD EQU STORAG+2 ;ADDRESS AT TOP LEFT
00760 EDCUR EQU STORAG+4 ;LOC'N OF EDIT CURSOR
00770 BYTED EQU STORAG+6 ;BYTE AT EDIT CURSOR
00780 RGTCUR EQU STORAG+8 ;# TIMES MOVED RIGHT
00790 DWNCUR EQU STORAG+9 ;# TIMES MOVED DOWN
00800 HATYPE EQU STORAG+10 ;TYPE OF DUMP FLAG
00810 KEY EQU STORAG+11 ;KEY INPUT STORAGE
00820 KEYH EQU STORAG+12 ;USED IN HEX ENTRY
00830 LSTARW EQU STORAG+13 ;DIRECTION OF LAST SCROLL
00840 ATADD EQU STORAG+14 ;HOLDS REFERENCE ADDRESS
00850 ;

00860 ; VIDEO LOCATIONS ---

00870 LINEO1 EQU 3C00H

00880 LINEO2 EQU 3c40H

00890 LINEO5 EQU 3D00OH

00900 LINE16 EQU 3FCOH

00910 VIDFST EQU 3CO00H

00920 VIDLST EQU 3FFFH

00930 ;

00940 ;

00950 ;= = = = = = = = = = = = 4 & - . . - .- - .- .- - -
00960 ;START OF MAIN PENRAM ROUTINE

00970 ;

00980 ORG STARTP

00990 JR ENTRY

01000 ;

01010 DEFS 80 ;WORK AND STORAGE SPACE.
01020 ;

’
01030 ENTRY DI

5/38

The Alternate Source Vol. I, No. 5

(continued...)

01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540

B~ wo e

NTRY 2

’
RETLBL

~o ~o

~e wo e

~

~

CALL -CLS

LD HL, 3E38H ;PROMPT FOR ADDRESS.
LD (CURPOS) ,HL

LD HL,INMSG

CALL OUTSTR ;DISPLAY IT.

TAKE IN 4-DIGIT HEX ADDRESS. BREAK FROM PENRAM
IF ONLY <ENTER> WAS PRESSED.

LD HL,3E78H ;CLEAR ANY PREV. ADDRESS
LD (CURPOS) ,HL ; AND TAKE IN NEW ONE.
LD A, 1EH ;ERASE TO END OF LINE.
CALL BYTDIS

LD B,4 ;ALLOW ONLY 4 DIGITS

LD HL,STRPLC

CALL LINEIN

LD a,B ;B HAS # CHAR. TYPED.
AND A

RET Z ; LEAVE PENRAM IF NO CHAR.
NOP ; ENTERED. CHANGE THIS
i

NOP TO A JUMP IF DESIRED.
CP 4

JR NZ ,ENTRY2 ;DO AGAIN IF < 4 CHAR.
IS INPUT VALID HEX? IF NOT, BACK TO PROMPT.

LD HL,STRPLC+3

CALL FRMBYT sMAKES ASCII CHAR AT HL
JR C,ENTRY2 ; INTO VALID HEX IN A.
LD (HOMADD) ,A ; RETURNS CARRY SET IF
CALL FRMBYT ; NOT VALID HEX.

JR C,ENTRY?2

LD (HOMADD+1) ,A

STARTING ADDRESS IS AT HOMADD. NOW INITIALIZE
SCROLLING DUMP ROUTINE AND BEGIN.

XOR A
LD (HATYPE) ,A ;ASSUME HEX DUMP.
LD (DWNCUR) , A ;EDIT CURSOR IS AT
LD (RGTCUR) ,A ; TOP LEFT

LD HL, (HOMADD) ;THIS IS FIRST REFER-
LD (ATADD) ,HL ; ENCE ADDRESS.

LD HI, 3C78H ;SET UP CURSOR AND
LD (CURPOS) ,HL ; PRINT LOGO AND
LD HL,PENMSG ; OTHER MARKS.
CALL OUTSTR

LD a, ">’

LD (3CF8H) ,A

5/39

The Alternate Source

(continued...)

01550
01560

01570

01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730
01740
01750
01760
01770
01780
01790
01800
01810
01820
01830
01840
01850
01860
01870
01880
01890
01900
01910
01920
01930
01940
01950
01960
01970
01980
01990
02000
02010
02020
02030
02040

’
REINIT

i
INITLP

i
UPDATE

NOW CALCULATE NEW EDIT CURSOR

LD
LD

RGTCUR.

;
;
; BYTE ADDRESS (BYTED) FROM NEW
;

i
LINEDN

a,'<'
(3CFFH) ,A
A,'='
(3D78H) ,A
A,'H'
(3D7EH) ,A

HL, (HOMADD)
(ADDR) ,HL
B,16
HL,VIDFST-1
(CURPOS) ,HL

HL, (CURPOS)
HL

(CURPOS) ,HL
HL, (ADDR)
MAKSTR
HL,STRPLC
OUTSTR
BC,16

AADDR

INITLP

A,1
(LSTARW) ,A

HL, (EDCUR)
(HL) ,BLANK

A, (DWNCUR)

A

B,A
HL,VIDFST-61
DE, 64

HL, (HOMADD)
BC,17

A

HL,BC

DE, 16

HL,DE

5/40

Vol. I, No. 5

;START WITH REQUESTED
; ADDRESS,

;FOR 16 LINES.
;INITIALIZE CURSOR.

; REPAINT SCREEN BY PRINT-
; ING 16 LINES,

;CREATES DUMP STRING FROM
; ADDR AND THE 16 BYTES
; THERE. PRINT STRING.

;POINT TO NEXT ADDRESS.
; CURSOR MOVED DOWN LAST.
;ERASE OLD EDIT CURSOR.
POSITION (EDCUR) AND EDIT

VALUES OF DWNCUR AND

; INITIALIZE FOR BEING
; COUNTED.

COUNT ADDRESSES IN ALT

i
; REGISTERS.

;FOR EVERY LINE DOWN, ADD
; 64 TO EDCUR AND 16

The Alternate Source

HL,DE
LINEDN

A, (RGTCUR)
A

B,A
DE, 3

HL,DE
HL
SPCRGT

(EDCUR) ,HL
(HL) ,CURCHR

(BYTED) ,HL

Vol. I, No. 5

; TO BYTED.

;FOR EVERY SPACE RIGHT,
; ADD 3 TO EDCUR AND 1
; TO BYTED.

;UPDATE EDIT CURSOR POS'N’
; AND PRINT CURSOR.

;UPDATE EDIT BYTE POS'N

DISPLAY THE CURRENT EDIT BYTE ADDRESS ALONG
WITH THE REFERENCE ADDRESS AND OFFSET FROM IT.

(continued..

02050 ADD
02060 EXX
02070 DINZ
02080 ;

02090 LD
02100 INC
02110 LD
02120 LD
02130 ;

02140 SPCRGT ADD
02150 EXX
02160 INC
02170 EXX
02180 DJINZ
02190 ;

02200 LD
02210 LD
02220 EXX
02230 LD
02240 EXX
02250 ;

02260 ;

02270 ;

02280 LD
02290 LD
02300 LD
02310 LD
02320 ; .
02330 DEC
02340 LD
02350 CALL
02360 CALL
02370 ;

02380 LD
02390 LD
02400 LD
02410 LD
02420 CALL
02430 CALL
02440 ;

02450 LD
02460 LD
02470 LD
02480 CALL
02490 LD
02500 LD
02510 XOR
02520 SBC
02530 LD

HL, 3CFAH
(CURPOS) ,HL
HL,STRPLC+4
(HL) , 3

HL

BC, (BYTED)
BSTRNG
OUTSTR

HL,3D7AH
(CURPOS) ,HL
HL,STRPLC+3
BC, (ATADD)
BSTRNG
OUTSTR

HL,3DB8H
(CURPOS) ,HL
A, 1EH
BYTDIS

HL, (BYTED)
DE, (ATADD)
A

HL,DE
(4121H) ,HL

5/41

;WILL PRINT HERE FIRST.

;PUT IN TERMINATOR FOR
; STRINGS BELOW.

MAKE BYTE THAT EDIT
CURSOR POINTS TO INTO
AN -ASCII STRING AND
PRINT IT.

~e Se Ne S

PRINT REF. ADDRESS SIM-
ILARLY.

~ w

TO PRINT OFFSET, FIRST
CLEAR THE LINE.

~ o~

;NOW CALC. OFFSET.

; RESET CARRY FLAG.
;GET OFFSET IN HL.
;GIVE IT TO THE ROM

The Alternate Source Vol. I, No. 5

(continued...)

02540 CALL NTF2 ; AS AN INTEGER.
02550 C2LL NUMSTR ;ROM MAKES IT A STRING. :
02560 CALL OUTSTR sWHICH WE PRINT. |
02570 LD A,'D' ;FOLLOW WITH D FOR DEC. ‘
02580 LD (3DBEH) ,A

02590 LD HL, 3DB8H ;NOW SEE IF IT WAS A
02600 LD A, (HL) ; NEGATIVE NUMBER.

02610 Ccp vt

02620 JR Z ,KBDSCN

02630 LD (HL) ,'+" ;IF NOT, MARK WITH +.
02640 ;

02650 ; THE EDIT CURSOR POSITION AND ALL POINTERS HAVE
02660 ; BEEN COMPLETELY UPDATED AT THIS POINT. ALL

02670 ; LOCATION INFORMATION HAS BEEN PRINTED. NOW

02680 ; BLINK THE CURSOR WHILE AWAITING KEYBOARD INPUT.
02690 KBDSCN LD B,BDELAY ;BLINK ON COUNTDOWN TO 0.
02700 HALFCK LD A, (SHIFT) ;SEE IF SHIFT PRESSED.
02710 AND A

02720 JR Z ,REGKI ;GO IF NO SHIFT

02730 LD A, (SHCNTL) ;ELSE CHECK FOR RETURN TO
02740 Ccp SHFLFT ; ADDRESS PROMPT OR
02750 Jp Z,ENTRY2 ; FOR SHIFTED UP/DOWN
02760 cp SHFTUP ; ARROWS. IF UP OR DOWN
02770 JR Z ,DOUP ; ARROW, SCROLL WITHOUT
02780 (01 SHFTDN ; DELAY.

02790 JR Z , DODN

02800 cp SHFBRK ;IF SHIFT/BREAK, REPLACE
02810 JR NZ, REGKI ; CURRENT REF. ADDRESS
02820 LD HL, (BYTED) ; WITH THE BYTE POINTED
02830 LD (ATADD) ,HL : TO BY THE CURSOR.
02840 JR JUPDAT

02850 ;

02860 REGKI CRLL KIR ;SCAN REGULAR KEYS WITH
02870 ; REPEAT.

02880 JR NZ,KPRESS ;GO IF ANY KEY DOWN.
02890 DINZ HALFCK ;BACK UNLESS BLINK TIME.
02900 ;

02910 LD HL, (EDCUR)

02920 LD A, (HL) ; FLIP-FLOP CURSOR CHAR-
02930 XOR 0AH ; ACTER AND GO BACK TO
02940 LD (HL) ,A ; BLINK IT.

02950 JR KBDSCN

02960 ;

02970 KPRESS LD (KEY) ,A ;A KEY IS DOWN. SAVE IT.
02980 CcP CLEAR

02990 JR NZ,DBNC ;GO IF NOT CLEAR KEY.
03000 LD A, (HATYPE) ;ELSE ON CLEAR ONLY, FLIP
03010 XOR 1 ; =FLOP TYPE OF DUMP.
03020 LD (HATYPE) ,A

03030 Jp REINIT ;AND REPAINT SCREEN.
03040 ;

5/42

The Alternate Source

(continued...)

03050 DBNC LD

03060 CALL
03070 ;

03080 LD
03090 ;

03100 ;

03110 ;

03120 CKUP Cp
03130 JR
03140 JR
03150 DOUP CALL
03160 JR
03170 ;

03180 CKDN CpP
03190 JR
03200 JR
03210 DODN CALL
03220 JR
03230 ;

03240 CKLF CpP
03250 JR
03260 JR
03270 DOLF LD
03280 DEC
03290 CcP
03300 LD
03310 JR
03320 LD
03330 LD
03340 CALL
03350 JR
03360 ;

03370 CKRT cp
03380 JR
03390 JR
03400 DORT LD
03410 INC
03420 Cp
03430 LD
03440 JR
03450 XOR
03460 LD
03470 CALL
03480

03490 JUPDAT JP
03500 ;

03510 ;

03520 ;

03530 ; KEY.
03540 ;

03550 ;

BC,KDLAY 1
DELAY

A, (KEY)

UPAROW
Z ,DOUuP
CKDN

CURSUP
JUPDAT

DNAROW
Z , DODN
CKLF

CURSDN
JUPDAT

LFAROW

Z ,DOLF
CKRT

A, (RGTCUR)
A

OFFH
(RGTCUR) ,A
NZ,JUPDAT
A,15
(RGTCUR) ,A
CURSUP
JUPDAT

RTAROW

Z ,DORT
KEYIN

A, (RGTCUR)
A

16
(RGTCUR) ,A
NZ,JUPDAT
A
(RGTCUR) ,A
CURSDN

UPDATE

IF IN THE HEX MODE,

5/43

Vol. I, No. 5

; DELAY TO AVOID BOUNCE.

; RETRIEVE KEY ENTERED.

NOW CHECK TO SEE IF THE KEY WAS AN ARROW KEY.
GO TO THE APPROPRIATE PROCESSING IF IT WAS.

;SCROLLING UP IS EASY -
; CURSUP DOES IT ALL.

;SCROLLING DOWN IS EASY =~
; CURSDN DOES IT ALL.

; LEFT ARROW MAY REQUIRE
; MOVING CURSOR UP ONE
; IF AT EXTREME LEFT.

;GO IF NOT AT FAR LEFT.
;ELSE MOVE TO FAR RIGHT
; AND SCROLL CURSOR UP
; ONE ROW.

; RIGHT ARROW MAY REQUIRE
; MOVING CURSOR DOWN ONE
; IF AT EXTREME RIGHT.

;GO IF NOT AT FAR RIGHT.
;ELSE MOVE TO FAR LEFT

; AND SCROLL CURSOR DOWM
; ONE ROW.

;ARROW KEY PROCESSED.

ARRIVE HERE IF KEY PRESSED WAS NOT A CONTROL
THAT SIGNIFIES AN ATTEMPT TO ENTER DATA.
CHECK THE DATA FOR 0-F. IF
IN THE ASCII MODE, JUST ENTER AND DISPLAY IT.

The Alternate Source

(continued...)

03560
03570
03580
03590
03600
03610
03620
03630
03640
03650
03660
03670
03680
03690
03700
03710
03720
03730
03740
03750
03760
03770
03780
03790
038090
03810
03820
03830
03840
03850
03860
03870
03880
03890
03900
03910
03920
03930
03940
03950
03960
03970
03980
03990
04000
04010
04020
04030
04040
04050

KEYIN

~

~e

H
WAITNX

~

~

BC,KDLAY2
DELAY

A, (HATYPE)
A
NZ,ASCIN

A, (KEY)
VAIHEX
C,UPDATE

(KEYH) ,A

HL, (EDCUR)
A, CURCHR
(HL} ,A

A, (KEY)
CURINC
BYTDIS

A, (CNTL)
BREAK
Z,REINIT
KIR
VAILHEX
C,WAITNX

C,A
A, (KEYH)
c

HL, (BYTED)
(HL) ,A

A, (HL)
CURINC
c,A
ASCIT
DE,HL
AH
BYTDIS
A,L
BYTDIS

BC,KDLAY 1+KDLAY 2

DELAY
DORT

5/44

Vol. I, No. 5

;DELAY FOR DEBOUNCE.
;CHECK TYPE OF DUMP,

;GO IF ASCII.

;IN HEX MODE. CHECK KEY.
; RETURNS CARRY SET IF KEY
; IS INVALID HEX.

;ELSE RETURNS VALID HEX

; IN A.

;PUT HEX O0-F IN HIGH

; NYBBLE OF A.

;SAVE IT.

; INCIDENTALLY REDRAW
; EDIT CURSOR SINCE IT
; MAY BE OFF,

; RETRIEVE KEY AND DISPLAY
; IT AT EDCUR+1.

;NOW WAIT FOR NEXT VALID

; HEX ENTRY. BREAK BACK
; TO MAIN ROUTINE IF

; REQUIRED.

;CHECK WHATEVER CAME IN,

; EVEN IF NOTHING DID.

;HAVE A VALID HEX CHAR!
sMERGE IT WITH LAST CHAR.

;STORE NEW BYTE AT BYTED.

s RETRIEVE AND DISPLAY IT
; AT THE EDIT CURSOR.

; THIS VERIFIES THE EDIT
; ACTION.

;DEBOUNCE DELAY HERE
; LIKE OTHER PATHS.
;AND GO ACT JUST AS IF
; RIGHT ARROW PRESSED.

The Alternate Source

(continued...)

04060
04070
04080
04090
04100
04110
04120
04130
04140
04150
04160
04170
04180
04190
04200
04210
04220
04230
04240
04250
04260
04270
04280
04290
04300
04310
04320
04330
04340
04350
04360
04370
04380
04390
04400
04410
04420
04430
04440
04450
04460
04470
04480
04490
04500
04510
04520
04530
04540
04550

ASCIN LD

ENDASC JP

~ wo we

A, (KEY)
c,a
VALASC
NC, JUPDAT
HL, (BYTED)
(HL) ,A

A, (HL)
c,A
VALASC
NC,ENDASC
CURINC
BYTDIS

DORT

END OF MAIN PENRAM ROUTINE.

vol. I, No. 5

;KEY IN SHOULD BE VALID
; ASCII, BUT CHECK IT
; TO BE SURE...

;ELSE ENTER INTO RAM AND

READ IT BACK TO VERIFY
THE EDIT ACTION.

; CHECK AGAIN FOR ASCII

; IN CASE WE'RE IN ROM.

;GO IF BAD.

o~ o~

;ELSE DISPLAY IT.

;PRETEND WAS RIGHT-ARROW.

0 e we Ne W W we we ™

ALHEX LD

NOTHEX SCF

ZTHRU9 SUB

ATHRUF LD

~ ~e

SUBROUTINES =---

(KEY) ,A
C,A
a,'F!

C
C,NOTHEX
A'l/'

C
NC,NOTHEX
A,'@'

C
C,ATHRUF
a,C

L

C,2THRU9
30H

A, (KEY)
37H

5/45

FLAG SET.

VALHEX TAKES AN ASCII CODE IN A AND CHECKS TO SEE IF
IT IS A VALID HEX CHARACTER (0-F).
VALHEX RETURNS WITH THE CARRY
HEX VALUE, THE A REGISTER RETURNS WITH THAT HEX
; VALUE (0-F) IN IT, AND THE CARRY FLAG RESET TO O.

IF IT IS NOT,
IF IT IS A

;C SET IF CHAR > F.

;C SET IF CHAR > /.

;C SET IF CHAR > @.

;C SET IF CHAR < :

;TO FLAG NOT-HEX.
;CONVERT TO HEX.

;CARRY WON'T BE SET FOR

; EITHER OF THESE. -
; RETURNS ON VALID HEX.

The Alternate Source Vol. I, No. 5

(continued...)

04560
04570
04580
04590
04600
04610
04620
04630
04640
04650
04660
04670
04680
04690
04700
04710
04720
04730
04740
04750
04760
04770
04780
04790
04800
04810
04820
04830
04840
04850
04860
04870
04880
04890
04900
04910
04920
04930
04940
04950
04960
04970
04980
04990
05000
05010
05020
05030
05040
05050
05060

; SUBROUTINE VALASC TAKES A BYTE IN C AND CHECKS TO SEE
; IF IT A PRINTABLE ASCII CHARACTER - EITHER UPPER OR
; LOWER CASE. IF ALPHANUMERIC IT IS SIMPLY RETURNED
; IN A, WITH THE CARRY FLAG SET. IF NON-PRINTABLE, AN
; UNDERSCORE IS SUBSTITUTED AND THE CARRY FLAG IS RESET.
VALASC LD A,7FH
CP C
JR C,NOTASC ;HAVE CARRY IF CHAR > 7F
LD A, 1FH ;SEE IF ITS TOO LOW TO
cp C ; BE ASCII.
LD A,C
RET C ;RETURN IF PRINTABLE.
r
NOTASC LD A,5FH ;NOT ASCII. PUT IN
AND A ; UNDERSCORE AND
RET ; RESET CARRY.
i
; FRMBYT LOOKS AT (HL), (HL+1) AND IF THE ASCII CODES
; THERE ARE BOTH FOR HEX CHAR 0-F, THEN THE HEX BYTE
; THEY DEFINE IS FORMED IN A AND RETURNED, WITH THE
; CARRY FLAG RESET TO 0. IF EITHER OF THE ASCII CHAR
; IS NOT 0-F, THEN A RETURN IS MADE WITH THE CARRY FLAG
; SET.
FRMBYT LD A, (HL) ;GET FIRST CHAR.
CALL VALHEX ;CHECK IT FOR 0O-F.
RET C ;RETURN IF NOT O0O-F.
LD E,A sWAS 0:F, KEEP ITS
DEC HL ; VALUE IN E.
LD A, (HL) ;GET SECOND CHAR.
CALL VALHEX ;IS IT ALSO HEX?
RET C ; RETURN IF NOT.
RLCA ;BOTH ARE 0-F. FORM
RLCA ; THE HEX BYTE IN A.
RLCA
RLCA
OR E
DEC HL ;PREPARE FOR NEXT CALL.
RET ;RETURN W/HEX IN A,
i
; CURINC POSITIONS THE STANDARD CURSOR AT THE LOCATION
; OF THE EDIT CURSOR PLUS ONE.
CURINC LD HL, (EDCUR)
INC HL
LD (CURPOS) ,HL
RET
H
; KIR SCANS THE KEYBOARD AND RETURNS IN A THE ASCII VALUE
; OF ANY KEY THAT IS PRESSED AT THAT INSTANT. IT

5/46

The Alternate Source Vvol. I, No. 5

(continued...)

05070
05080
05090
05100
05110
05120
05130
05140
05150
05160
05170
05180
05190
05200
05210
05220
05230
05240
05250
05260
05270
05280
05290
05300
05310
05320
05330
05340
05350
05360
05370
05380
05390
05400
05410
05420
05430
05440
05450
05460
05470
05480
05490
05500
05510
05520
05530
05540
05550
05560

ALSO CLEARS THE KEYBOARD INPUT ROUTINE BUFFER AT

r
; 4036-403C. THIS MAKES THE KI ROUTINE THINK THAT
; THE LAST KEY PRESSED WAS SUBSEQUENTLY RELEASED, SO THAT
; IT WILL SCAN AGAIN, THUS GIVING THE EFFECT OF REPEATING
; KEYS.
KIR CALL KI ;GET KEY IF PRESSED.
LD D,A
D E,7 ;WILL PUT 7 ZEROS IN
LD HL,KIBUF ; BUFFER.
XOR A
RPT LD (HL) ,A ;CLEAR ONE BYTE.
INC HL
DEC E
JR NZ,RPT
LD A,D ;RETRIEVE CHAR.
AND A ;SET FLAG IF ZERO.
RET

~

()~ N6 s N6 Na Ne Ne w6 we Ne Ne %o %e we e W we we e

~e

CURSUP HANDLES ALL MOVEMENT OF THE CURSOR UPWARDS.

IT CHECKS FIRST TO SEE IF THE TOP OF THE SCREEN HAS
BEEN REACHED (DWNCUR=0). IF NOT, IT SIMPLY DECREMENTS
DWNCUR AND RETURNS TO THE UPDATE. IF AT THE TOP OF
SCREEN, THE TOP 15 LINES MUST BE MOVED DOWN ONE, AND
THE NEW DUMP LINE (AS FORMED BY MAKSTR) PRINTED ON THE
TOP LINE. SINCE MAKSTR NEEDS AN ADDRESS ADDR TO FORM
THE DUMP STRING, CURSUP MUST ALSO DETERMINE WHETHER THE
LAST SCREEN SCROLLING WAS DUE TO THE CURSOR MOVING UP
(IN WHICH CASE THIS IS MERELY A CONTINUATION AND ADDR
IS ALREADY CORRECT) OR DOWN (IN WHICH CASE THE VALUE OF
ADDR WAS LEFT BY CURSDN AT 272 BYTES MORE THAN WHAT IS
WANTED HERE) .

BEFORE RETURNING, CURSUP SUBTRACTS 16 FROM BOTH ADDR
(ANTICIPATING ANOTHER CURSOR-UP SCROLL) AND FROM
HOMADD, BECAUSE THE ADDRESS DISPLAYED AT THE TOP LEFT
HAS ALSO DECREASED BY 16 BYTES.

NOTE THAT ONLY THE FIRST 55 CHAR. OF EACH LINE ARE
SCROLLED; THE LAST 9 CHAR. ARE UNTOUCHED.

URSUP LD A, (DWNCUR)
AND A
JR Z ,CONTU1 ;GO IF TOP OF SCREEN.
DEC A ;ELSE MOVE EDIT CURSOR UP
LD (DWNCUR) ,A ;AND RETURN TO UPDATE.
RET

’

CONTU1 LD A, (LSTARW) ;SEE IF LAST SCROLL WAS
AND A ;DUE TO CURSOR DOWN.
JR Z , CONTUP ;GO IF NOT.
LD BC,272 ;MUST FIX ADDR.
CALL SADDR ;SUBTRACT 272 FROM IT.

5/47

The Alternate Source

(continued...)

05570
05580
05590
05600
05610
05620
05630
05640
05650
05660
05670
05680
05690
05700
05710
05720
05730
05740
05750
05760
05770
05780
05790
05800
05810
05820
05830
05840
05850
05860
05870
05880
05890
05900
05910
05920
05930
05940
05950
05960
05970
05980
05990
06000
06010
06020
06030
06040
06050
06060

.

CONTUP LD

~

MVLOPS LD

~e

~

BOTTOM.

() N e N0 Ne e e e No e e e e S

URSDN LD
Cp
JR
INC
LD
RET

’

MOVED DOWNWARD.

HL, (EDCUR)
(HL) ,BLANK
HL, (ADDR)
MAKSTR

A,15

HL, 3F80H
DE, 3FCOH
BC,37H

BC,-119
HL,BC
DE,HL
HL,BC
DE,HL

A

NZ ,MVLOPS

HL,LINEO1
(CURPOS) ,HL
HL,STRPLC
OUTSTR

BC,16
SADDR
SHOMAD

A
(LSTARW) ,A

Vol. I, No. 5

;ADDR IS CORRECT HERE.
;REMOVE OLD CURSOR.

;GET ADDR TO DUMP.

;MAKE DUMP STRING OF IT.
;SCROLL TOP 15 LINES

; DOWN, MOVING ONLY THE
; LEFT 55 CHARACTERS.

;POINT TO NEXT LINE.
;AND WHERE IT WILL GO.

sBACK IF 15 NOT DONE.

;POINT TO FIRST LINE.

;PRINT DUMP STRING THERE.

;ADD 16 TO ADDR, HOMADD.

;NOTE SCROLL CAUSED BY
; UP-ARROW.

CURSDN IS THE MIRROR IMAGE OF CURSUP IN THAT ALL

THE SAME ACTIONS ARE INVOLVED, BUT THE CURSOR IS

IF IT IS ALREADY AT THE BOTTOM OF

THE SCREEN, THE BOTTOM 15 LINES ARE SCROLLED UP AND
THE NEW LINE FORMED BY MAKSTR IS PRINTED ON THE

ADDR IS CORRECTED IF THE LAST SCROLL WAS DUE
TO AN UP-ARROW, AND IS LEFT ANTICIPATING ANOTHER DOWN-
ARROW COMMAND.

THAT IS, IT POINTS 16 BYTES BEYOND THE

ADDRESS DISPLAYED AT THE BOTTOM LINE.
UPDATED TO REFLECT THE NEW ADDRESS DISPLAYED IN THE
TOP LEFT CORNER.

A, (DWNCUR)
15

Z ,CONTD1

A
(DWNCUR) ,A

HOMADD 1S

;GO IF BOTTOM OF SCREEN.
;ELSE MOVE EDCURSOR DOWN.
;AND RETURN TO UPDATE.

<<<< LISTING CONTINUED, PG. 66 >>>>

5/48

5

I, No.

Vol.

The Alternate Source

—:
vybp-L62-01G XML 0112658 (€09) lva h«ﬂ

GGBE0 HN ‘weying MaN 012 xog SU &
“oup ‘Yorworsyy ung \\w%W e owoy

HeM 0G1 40} 00°G6H$ e Butels
3|qe|IBAR SAVOAVIN DIEDUBIS »

(SaALp %sIp § UNM
08-S4L Il 1apow)
salnuiw G 10}
SHEM 00v 8pinoid [imeeee
uojesado snonuiuod
HEM (GC pajeyecee

«00°006$ ueyj ss9) 404 1no
sa0f Jamod 8y} uauym uo
swalsAs xsip g 19Indwod
sdaay arem auls 8j9kd 09
paau Jey) SWaisAs asoyl Jojeeee

(Aiddng 1amog agudnuaiuin)

‘S*d M

5/49

The Alternate Source Vol. I, No. 5

FROM THE SOURCE'S MOUTH

By Joni M, Kosloski

I'd like to take this page or so and share with you the
two major complaints our 'magazine' has received since it's
conception. Both have resulted in subscription
cancellations, the only two we've experienced. (This
technique sure makes an impression on us! You might try it
elsewhere.)

The first is that we're "only" bimonthly. Apparently
bimonthly doesn't qualify for the valuable periodical
category. We have several defenses regarding this:

1. We are priced to accommodate a bimonthly
schedule. In all humbleness (and we all know
it's hard to be humble!) we feel we give
close, if not the best, dollar value per issue
available.

2. BTI, our subjective sister, is evolving quite
rapidly. If the next couple issues are well
received we will probably announce this as
generally available. BTI is published on
months opposite from TAS.

3. There is no question that we could generate
enough articles to go monthly, but the more
articles we solicit, and the more articles we
have to publish, the 1less we can pick and
choose. We also 1like to work with authors,
trying to develop viable subjects and quality
articles. This can evolve into a time
consuming project.

We 1like to think that we exist for more than the sake
of publishing. If articles don't generate a minimum amount
of favorable feedback and discussion then the job just won't
be fun anymore, and I don't think you'd enjoy each issue as
much as (I hope) you do now.

Actually, what you should do is subscribe to both us
and 80-U.S. and get 12 months of really diverse exposure!
(I wonder if Mike Schmidt has these problems?)

As a bottom line to this first complaint, becoming a
monthly publication is something that will almost definitely
happen =-- it's just a matter of REALLY being ready for it.
We'll know when we are, and we'll let you know, too.

5/50

The Alternate Source Vol. I, No. 5

Our second major complaint is regarding our heavy
emphasis on DOS and a lack of material for a Level II, 16K
configuration. We've received a small handful of letters
with comments 1like "If you're concentrating on SERIOUS
applications, then forget Level II!" or "You mean there's
STILL people wusing TAPE?" Well, I personally know quite a
few people who will get very defensive about their Level II
systems. And I can't argue with them. I don't think it's a
lack of money for upgrading, either. These people are quite
satisfied with their under-a-thousand dollar machines; who
are we to judge them? If they can get a Level II TRS-80 to
accomplish what they want it to, I think that's commendable.

I also know, from software orders and various feedback,
that a large portion of our subscribers have disk systems.
I know the figure is over half; I would hesitate only
briefly to claim a 75% figure.

As far as articles for either configuration, it seems
that there is a growing number of authors coming from the
DOS portion of the TRS-80 audience. But we're trying to
satisfy both sections. Recent feedback seems to indicate
we're keeping both sides satisfied. It's important to let
us know your wants and needs -- keep us informed! More than
one reader has indicated that we should address articles
more clearly towards either Level 1II or DOS. We really
thought we were doing this. Speaking generally, if one or
the other is not mentioned in the first paragraph, the
reader can safely assume that the topic is applicable for
both systems.

Another reader writes a more lengthy tale -- can you
actually believe we were criticized for lack of software ads
in issue 4? I was really surprised. His basis for comments
is that no publication can survive on subscriptions alone
(amen!) . They actually have two choices -- they can help
support the publication through numerous advertisements, oOr
through software sales. At this point, TAS is staying alive
and well thanks to the many subscribers that also’ choose to
do their software business with us as well.

However, I have heard many complaints about other
so-called magazines actually -being software catalogs for the
company involved. I tend to agree, and try not to swamp you
folks with listings of everything we have in stock. I
extend my appreciation to those of you who support our
software staff; let's suffice it to say that we handle a
multitude of software and would be pleased to service your
needs. We'll continue to run a minimum of ads for those of
you who are not in regular contact with us -- it's our means
of letting you know about new and exciting products.

5/51

The Alternate Source Vol. I, No. 5

NEWDOS-80

An Appraisal, by Al Domuret

Well, here it is. After long, anxious, and curious
anticipation, NEWDOS-80 has finally arrived. And an
impressive package it is! But that is my opinion, and
everyone may not agree. After wading through the following
paragraphs, the reader should have a better idea of what
NEWDOS-80 is all about.

What I hope to accomplish with this appraisal is
twofold: to provide for those of you who have not yet
purchased NEWDOS-80 enough information, both pro and con, so
you can determine whether or not you want to invest in it,
and also to provide the current and potential users with a
bit of operational guidance and some fixes for some of the
minor difficulties I encountered. Table 1 at the end of
this article contains some zaps that should also prove
useful.

Upon receipt of the NEWDOS-80 package (hereinafter also
referred to as N80), the first surprise was the quantity of
documentation. A quick count revealed 96 pages, printed on
both sides and bound in an attractive brown notebook. I was
pleased at this breakthrough -- up to this point, Apparat
was known for the quality of their software, not necessarily
the documentation. While it is my impression that the
documentation is complete, well done and understandable, I
have heard complaints that it still isn't clear enough.
Perhaps this is understandable, since NEWDOS-80 is a complex
and somewhat advanced disk operating system, and there is a
lot to it in terms of both quality and quantity. The
distributed diskette has ZERO free space!

The following quote has been extracted from Page 1-1 of
the N80 documentation to give potential buyers some idea of
what to expect:

"NEWDOS-80 is not a simple system. ...the
user...should spend one to two hours studying the
documentation before doing anything with the
NEWDOS-80 diskette,”

Had I written Apparat's N80 documentation, I would have
stated it differently: "N80 will take time to learn, just
as any complex piece of new software would. It is not a
game that will simply 'load and go'. However, once the
power and utility of N80 is fully digested and understood,
it is no more difficult to use than any other system." When
first getting NEWDOS-80, the novice will find many of the

5/52

The Alternate Source Vol. I, No. 5

functions easy to use and understand. The COPY and BACKUP
functions of N80 are slightly different and more advanced
than TRSDOS, but simple to wuse. The psuedo-experts will
find plenty of new and complex stuff to keep them busy for
quite some time, too.

Okay, but aside from the wusual DOS features carried
forward from TRSDOS 2.3 and NEWDOS 2.1, just what does N80
offer that is new and different? Well, first, it permits
the DOS itself to be "customized"”. This one feature can be
as powerful as the user wants it to be -- you set up the DOS
according to your exact hardware configuration and your
exact needs. For example, it is possible, using the new
"PDRIVE" command, to define your DOS for diskettes having 01
to 96 tracks, almost any combination of 5 or 8 inch drives,
single or double density. (Since someone is bound to ask,
this magic can only occur if you have the proper hardware
attachments -- N80 provides only the necessary software.)

It is also possible to define either the OMIKRON eight
inch drive system or the LOBO expansion interface to N80.
Provisions are made for future hardware adaptations by
leaving space for additional customizing code:.. For those
of you having 77 track (or more) drives, you've probably had
occasions when the standard one-track directory doesn't have
enough capacity for the numerous files on the diskette.
NEWDOS-80's directory can be expanded to up to three tracks
for this purpose. Additionally, the directory track can be
relocated elsewhere on the diskette, if desired. I often
wondered if having the directory on track one rather than 17
(decimal) would be more efficient in terms of reducing disk
head travel. Now I can find out!

Further, it is possible to use the new DOS "SYSTEM"
command (which is not the same as Basic's SYSTEM command
used for loading machine language tapes) to customize
certain DOS functions. Some of the more interesting ones
are: passwords can be enabled or disabled; there's a BASIC
RUN~-ONLY mode to protect BASIC code from unauthorized access
by computer operators which can be enabled or disabled;
lower case as installed or not installed; BREAK key enabled
or disabled; DEBUG enabled or disabled; and many more. No
manual ZAPS are required. Just follow instructions for DOS
"SYSTEM" command and everything else is pretty much
automatic. I initially experienced some difficulty getting
my DOS SYSTEM command to work. The solution is to enter the
command as follows:

SYSTEM,USD:1 AA=N (and so on...)

Evidently, the USD (Use System Disk) serves as a
password until such time as they are disabled by the

5/53

The Alternate Source Vol. I, No. 5

appropriate SYSTEM command. Unless I was initially doing
something wrong, this was not immediately obvious to me.

MINI-DOS and DOS commands via the 2.1 "CMD" functions
are beauties. Specifically, MINI-DOS and "CMD" are two ways
of bringing up DOS commands.

The operational distinctions between DOS and BASIC
become blurred as it becomes possible to execute most DOS
library commands at almost any time, and from almost any
program, whether in BASIC or otherwise. (Library commands
are the usual commands such as DIR, DUMP, FREE, CLOCK, etc.
Not included are the commands that cause a program to
execute.) Let's first take a look at the "CMD" function.

The BASIC "CMD" function still works as it did in
NEWDOS 2.1, but it has been expanded to allow more DOS
operations as long as the DOS command doesn't clobber the
resident BASIC program and its variables. N80 performs some
checking routines to help prevent this disaster. For
example, both SUPERZAP (which is now written in machine
language, by the way, and is it fast!) and DIRCHECK can be
exercised from BASIC (one at a time) without clobbering
BASIC operations, variables or programs. Unless, of course,
you do so intentionally. Here is an interesting trick that
can be worked in BASIC:

10 CLS

20 CMD"SUPERZAP":REM ** DIRCHECK also possible **
30 CLS

40 PRINT"Finished"

When finished with SUPERZAP (or DIRCHECK), exit with
SUPERZAP's EXIT command or DIRCHECK's character "N".
Although both SUPERZAP and DIRCHECK imply that they will
exit to DOS, both will return to BASIC if called up from
BASIC, 1like the mini program above demonstrates. There are
more possibilities, but there is not enough space here to
cover them all. Certainly, many unique applications can be
found for "CMD" operations from BASIC.

Now let's consider MINI~DOS. Perhaps the N80
documentation best explains its purpose:

"There are many times when, during the execution
of a main program, the operator would like to
interrupt the main Program, execute one or more of
the DOS library commands, and then resume main
program execution without any change having
occurred in the main program's state during the
interruption. To execute MINI-DOS, simultaneously
press the 'DFG' keys (but not during disk I/0),

5/54

The Alternate Source Vol. I, No. 5

and execute the DOS command. Any DOS library
command can be issued except APPEND, CHAIN, COFY,
FORMAT, PDRIVE, and SYSTEM. Single file copy can,
however, be executed with the MDCOPY command."

(See? That bit of documentation wasn't too difficult
to read, was it?) What exactly can MINI-DOS do? How about
calling up a DIRectory from SCRIPSIT?! Simple. Move the
cursor to the end of the text file (a precautionary measure
to prevent the 'DFG' keys from overwriting SCRIPSIT text
when pressed) or to the command position by using the BREAK
key {(preferred over the former method). Now press the 'DFG'
keys to bring up MINI-DOS, then enter "DIR :1". When
finished, just enter "MDRET" to return to SCRIPSIT. Yes,
Tandy, Apparat bailed you out again! A major SCRIPSIT
weakness, the inability to manipulate directory files, has
been compensated for. For users who, like myself, have
become addicted to ST80D or ST80III (by Lance Micklus), its
inability to call a directory is no longer a problem either.
Use MINI-DOS to perform a DIR, KILL, or whatever -- without
disturbing the main program.

Want to check diskette free space before writing to it?
Or kill a file to release space on a full diskette? How
about renaming a file? No problem, either. Want to exit
SCRIPSIT without reaching back for the reset button? Enter
MINI-DOS, then enter "BOOT". It's great!

There are some things to understand in order to
maximize accessibility to MINI-DOS. Toward the end of this
article, some instructions are provided on how to achieve
MINI~DOS operations with the Electric Pencil (Shrayer
Software) and on what to watch out for in other programs
that might defeat MINI-DOS, especially those written in
machine language.

Another subtle but potentially powerful feature has
been added for bringing up DEBUG: simultaneous depression
of the '123' keys will bring up DEBUG at any time. This is
a handy way of getting to the innards of a BASIC program
that disables the BREAK key to prevent the program from
being listed. Similarly, DEBUG can be activated in the
midst of a machine language program, as long memory
requirements of the program and DEBUG don't conflict and the
target program doesn't conflict with the keyboard Device
Control Block (DCB) at 4016 hex.

The CHAINing command will exercise a series of DOS or
BASIC commands, or it can make automatic inputs to a BASIC
program. For those who are familiar with the BOOTSTRAP or
COMPROC programs (Practical Applications and RACET
computes) , the functions are similar. One important

5/55

The Alternate Source Vol. I, No. 5

difference, though, is that BASIC can implement a CMD
"CHAIN" instruction which will then activate a predetermined
collection of inputs to BASIC. Think of it as automating
the keyboard.

A nice feature of the N80 CHAIN command is that a
wasteful five~-sector (one gran) file is not necessarily
created for every individual CHAIN file. To avoid this, you
can append a number of CHAIN command strings into one file,
then access only the one that is needed.

For machine language enthusiasts, the documentation
provides a wealth of technical information for making use of
N80's internal instruction code in personal programs. As
only one example, a "DOS CALL" machine language routine is
provided which very easily allows the incorporation of DOS
commands into your programs. Want to use RSM2D to 'LOAD' a
file into RAM? 1It's possible with about a dozen bytes of
code. How about creating your own SYS20/SYS file? The
documentation explains how. Apparat's 'no secrets'
marketing approach is genuinely refreshing.

Disk BASIC, like N80, is a complete rewrite. BASIC
still works as it always did, and there appear to be no
BASIC program incompatibilites. But Disk BASIC has been
upgraded with a number of fascinating enhancements.

In addition to being able to RENUMber a BASIC file, it
is now possible to move program lines around within the
program. REF (variable and line number cross referencing),
improved scrolling, and "CMD" (described above), are still
available and operate as implemented in NEWDOS 2.1. 1In
BASIC RUN-ONLY mode, the CLEAR and BREAK keys are disabled
and will not accept direct Statements from the operator. In
business applications, this keeps the computer operator from
gaining access to unauthorized files and from manipulating
the program itself. A nice touch is that Apparat
thoughtfully made it possible for a BASIC menu program to
LOAD or RUN another BASIC program. In other words, it is
possible for a BASIC program to call up another program or
data file with embedded commands, but the computer operator
cannot do this directly from the keyboard. At power-up, the
computer boots up and directly executes the selected
program. The operator has no control other than to operate
the program as intended by the boss. Of course, DEBUG and
MINI-DOS can also be locked out to further frustrate the
operator.

Now comes the part that I am afraid will leave the
reader somewhat unfulfilled. A number of wondrous new BASIC
Disk Input/Output (I/0) enhancements are implemented, but
there is not enough space to go into all the details here.

5/56

The Alternate Source vol. I, No. 5

Briefly, disk record lengths can now be wup to 4096 Dbytes
long instead of the old 256 byte maximum. Disk files can be
created and accessed in a variety of ways that allows
manipulation of file data in almost any conceivable format,
from a single byte to a 4096 byte record, using fixed length
files or variable length files. These new disk 1/0 options
are available via five new BASIC file types which are
classified into two major groupings: fixed item files and
marked item files.

But the reader is cautioned. Apparat introduces new
and esoteric terminology which makes things a bit difficult
for the novice. To simplify things as much as possible, N80
includes a sample program which is accompanied by a tutorial
chapter in the documentation to help the new user along.
This beginners approach, plus an alphabetized glossary,
eases the operator gradually and painlessly into a very
powerful set of disk I/0 functions.

In the +tutorial, the operator is walked through the
procedures, step by step, for creating and using the new
BASIC files. To further simplify things, analogies are made
to the more traditional sequential and random file
operations. With a 1little patience and practice, a whole
new world of disk I/0 manipulations becomes possible. One
might ask, "Are my old sequential and random disk BASIC
files still compatible? And can I still create them with
N80's enhanced BASIC?" The answer is, absolutely. Your old
BASIC files are compatible with N80, and it is still
possible to create the "standard" sequential and random
files.

AREAS OF INCOMPATIBILITY

For the benefit of readers who have not yet learned a
fundamental fact about newly introduced software,
particularly when the softwaree is a new Disk Operating
System, there is no way in the world to maintain total
compatibility with existing software. This is especially
true when machine language programs directly access
"non-standard" subroutines within the guts of the DOS
software itself. It may sound trivial to make such an
obvious statement, but it has become very clear to me that
even well known and experienced personalities in this
microcomputer business can get upset; indeed, have gotten
upset, about the few and minor incompatibilites in
NEWDOS-80.

Apparat acknowledges known incompatibilites and they

even provide the necessary =zaps or guidance, where
applicable, to compensate for them. If and when new

5/57

The Alternate Source Vol. I, No. 5

problems arise, I feel certain that fixes will become
available., At any rate, it appears at the present time that
N80's incompatibilites are trivial.

Enough rationalizing. The following is a brief
description of real or potential incompatibilites as 1listed
in the N80 documentation.

1. User routines which are driven by the 25ms TRSDOS
Oor NEWDOS 2.1 interrupt must be modified to work with N80.
The N80 documentation explains the patches necessary to
correct potential problems. To my knowledge, about the only
commercial programs that might experience interrupt problems
are spoolers and despoolers.

There is a compatibility problem with ST80IIT and with
the Microsoft FORTRAN package, including the MACRO-80
assembler, but Apparat thoughtfully provides the necessary
zaps to make these programs compatible with N8O,

2. Enabling or disabling the BREAK key was formerly
accomplished by changing the address at 4313 hex. The new
address to accomplish this is 4369 hex. The procedure is
explained in the N80 documentation.

3. The same NEWDOS 2.1 "incompatibility" involving
'NEXT' and 'EOF' in the FCB (File Control Block) continues
with NEWDOS-80. Typically, +this has been inconsequential
for most users.

In this same context, SCRIPSIT owners have no doubt
learned by now that its disk I/O works properly only with
TRSDOS. But Apparat provides the necessary zaps to make
SCRIPSIT work with N80, and with NEWDOS 2.1 also.

It should be evident that these minor incompatibilites
will not concern the average user unless one of the spoolers
marketed by other distributors is involved. Machine
language pros should have no difficulty in coping. Again,
the N80 documentation lists old and new interrupt addresses
to aid machine language hackers in making repairs.

Virtually all popular DOS routines are still accessible
with the standard DOS address calls; for instance, Open,
4424H; Read, 4436H; Display ASCII text, 4467H; and so on.
This applies to BASIC functions as well. The traditional
DOS call addresses, plus some new ones, are conveniently
listed in the N80 documentation.

As was true with NEWDOS 2.1 when first introduced, and
as 1is now true with NEWDOS-80, Apparat has done an
exceptional job of maintaining compatibility among DOS
systems. This is especially notable when one considers that
N80 is a complete rewrite. Not only has Apparat given us

5/58

The Alternate Source Vol. I, No. 5

the best available DOS system for the TRS5-80 (NEWDOS 2.1,
and now NEWDOS-80), they have also managed to do so with a
minimum of inconvenience to the user.

I found +two other problems. Both the Electric Pencil
and the MISOSYS Editor Assembler (get this one if you
haven't already. It has some great improvements over the
Apparat disk EDTASM, and its disk files are mutually
compatible with Apparat's EDTASM. It's called DISK*MOD and
available through TAS) will not properly read a disk
directory. The fixes for both of these programs are
provided in Table 1.

For TRS~80's with a CPU clock speedup board installed,
the zaps to make N80 function at faster clock speeds are
also provided in Table 1. However, let me suggest this: If
your TRS-80 is modified for the 2.66 Mhz CPU clock, first
try N80 without my fast clock =zaps; they may not be
required. Since I do not have a 2.66 Mhz system, I have no
way of knowing if the unmodified N80 will work at the 50
percent speedup.

Those of you who are running at a 100 percent CPU clock
speedup (3.54 Mhz) will no doubt have to install my zaps. I
am running at 4.0 Mhz and N80 requires my zaps to function
at this clock speed. If my zaps are installed, you should
experience no problems running N80 at either the normal 1.77
Mhz or any souped up CPU clock speed, from 2.66 to 4.0 Mhz.

SOME HINTS ON MINI-DOS

In order for MINI-DOS to function, the current program
(the program this is up and running) must allow for enabled
interrupts and it must not take away the keyboard device
control block at memory location 4016 hex.

For example, PENCIL changes the keyboard DCB, although
it does not make use of the DCB after it makes the change -~
it uses its own keyboard scan routine. Perhaps PENCIL
modifies the DCB to keep DEBUG from nosing around or to
prevent user access to the PENCIL RAM area. At any rate,
the fix is a simple one, and I have experienced no problems
as a result. The zaps are listed in Table 1.

By teaching PENCIL to leave the keyboard DCB alone, it
is possible to wuse MINI-DOS, and even DEBUG, without
crashing PENCIL or its text. This is useful ~~for -renaming
PENCIL files, doing a "FREE" on the diskette, or using DEBUG
(call it up by pressing "123°) to examine the text directly
in memory, perhaps to determine how much memory space is
still available.

5/59

The Alternate Source Vol. I, No. 5

By the way, if DEBUG is called up to play around with
PENCIL, 5C6F hex is a good re-entry address. Just enter
from DEBUG, 'G 65C6F'. PENCIL's text file will not be
disturbed.

If my zaps are not made to PENCIL it will still be
possible to call wup MINI-DOS or DEBUG, but they will be
useless because they will have no access to the keyboard.
In fact, your system will hang. Need I say more?

Another thing to watch out for is the block move
routines (the LDIR or LDDR instructions) which move programs
or subroutines around in RAM. Normally, these block move
routines, including those created by Apparat's LMOFFSET,
disable interrupts with the DI machine language code as the
first instruction. Then, unless the program to be run
reactivates interrupts, MINI-DOS or DEBUG will not function.

The solution is to patch each block move routine as
necessary with an enable interrupt command (hex code 'FB')
before the jump to the program's execution address. Here is
what it should look like:

DI ;jdisables interrupts

LD HL,ssss ;source address

LD DE,dddd ;destination address

LD BC,bbbb ;byte count

LDIR ;move it

EI (new) ;enable interrupts (added)
Jp eeee ;JP to execution address

With the EI properly inserted, interrupts are
re-enabled and, if the program does not permanently disable
them again (as RSM2D and some others do) , MINI-DOS will
function normally.

If you have not patched SCRIPSIT with one of these
block move routines (as I did with PENCIL) , only one 2AP is
required to re-enable its interrupts. It is provided in
N80's documentation.

Well, there you have it. There are many additional new
and useful features in NEWDOS-80, but I tried to limit
myself to the most interesting ones, Hopefully there is
enough information here to ease the transition into
NEWDOS-80 and to give potential buyers some idea of what to
expect.

Let me 35rt with one last suggestion. If you have an
original NEWDOS 2.1 and are eligible for Apparat's N80
upgrade special deal (submit your registration number and
pay the cost differential of $50.00), and if you are

5/60

The Alternate Source Vol. I, No. 5

considering buying one of the commercially available
spoolers for the typical price of $40.00 or more, pay the
$50.00 for the NEWDOS-80 upgrade. You get a spooler for
free with NEWDOS-80 (remember routine to printer and
display?). And it is probably better than most of the
others currently available.

TABLE 1
NEWDOS-80 ZAPS

For the following =zaps, the purpose is first explained,
followed by the relative file's sector in hex, then the
relative byte in hex. The format is as follows:

01/60 = relative sector one, relative byte 60

The use of hex is emphasized because the new SUPERZAP/CMD
will accept decimal inputs as well as hex.

1. ZAP to make PENCIL read a directory properly:

05/60 change: 58 23 22
to: 58 00 22

2. ZAP to make the MISOSYS EDTASM read a directory
properly:

08/39 change: 5D 13 ED
to: 5D 00 ED

3. 2ZAP to make PENCIL accept a MINI-DOS request:

00/61 change: 54 22 16 40 21
to: 54 00 00 00 21

Also, verify that 00/C5 reads C1 FB C9. Likewise for
01/57; should read C9 FB 21. (Some users zeroed out the FB,
which is an enable interrupt code, because of old TRSDOS 2.1
problems) .

4. FAST CLOCK ZAPS (Caution: these zaps use DOS RAM areas
that appear to be unused, but may turn out to be used by
some routine I haven't found yet. Use with caution, and if
you develop a problem I would appreciate hearing about it):

5/61

The Alternate Source

change:
to:

may already be in your SYS0/SYS.

Vol. I, No.

C5 OA 08 F5 E5 E1 E5 E1 F3
C5 C3 F5 4C E3 E3 E3 E3 F3

leave them, but it will still be necessary to put in the

SYS0/sys: 03/54
(NOTE: the E3's
F5 4C.)

SYS0/sYs: 04/7E
SYS0/SYS: 04/89

(The E3's here

SYS0/SYS: 04/A0
SYS0/SYS: 0A/10
SYS6/sYS: 04/C7
SYS6/SYS: 0C/20

(The E3's were

0C/27:

0C/9F:

change:

to:

change:

5E
36
CB
20
17

5E
C1
00
10
00

oA
CF
CB

change:
to:

verify:

change:
to:

change:

to:

change:
to:

verify:
already

CB
CB
4E
23
CB

C5
C3
00
Fa
00

4E
4E
20
CB
4E

06
37
00
C1
00

4E
4E
20

c2
20
26
4E
20

12
5E
00
D9
00

c2
20
BF

01 00 80 DC
01 00 00 DC

C9 E3 E3 E3 E3 3A
were already in place in my copy.)

11 00 24
11 00 52

00
00
E3
F5

01
01

00
00
E3
Cc3

00
00

00
00
E3
59

80
00

1B
1B

00
00
E3
46

00

00

00 A5

0A

08

00 A5

E3 E3 E3 E3 0A
in place in my copy.)

37
32
D9
20
13

CB
00
00
(03]
00

48
CB
CB

5/62

S5E
CB
Cc9
1F
CB

4E
00
00
c1
00

5E
CB
4E

CB
4E
CB
CB
4E

20
00
C5
C3
00

CB
4E
20

4E
20
BB

20
2E
c2
20
oF

10
00
12
5E
00

20
Cc7
08

3A
CB
3F
1B
D9

FA
00
CB
00
D9

D3
CB

CB 4E 20
4E 20 2A
5E CB 4E
CB 4E 20
(Stop)

C1 D9 C9
00 00 00
4E 20 05
00 00 00
(Stop)

CB 4E 20
4E 20 C3
(Stop)

5

If so,

C3

The Alternate Source Vol. I, No. 5

to: 0A C5 06 16 CB 4E 20 06 10 FA C1 C3 8D
5E C1 C3 48 5E 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 08 (Stop)

5. Optional ZAP to make the BREAK key functional for the
'"JKL' screen print option. (Caution: these =zaps use DOS
RAM areas that appear to be unused, but may turn out to be
used by some routine I haven't found yet. Use with caution,
and if you develop a problem I would appreciate hearing
about it):

SYs0/sYS: 00/B9 change: All zeros (Note -- there is
a 01 at 00/B1. Sector/Byte
corresponds to RAM memory
location 43A6).

to: F5 E5 3A 7F 38 FE 04 28 08 EI1
F1 CB 74 23 C3 B2 45 3E 0D CD
3B 00 E1 F1 C3 66 45 00 (End)

SYs0/sYs: 02/A9 change: 7E CB 74 23 20
to: 7E C3 A6 43 20

6. Optional ZAP to the BASIC/CMD file to implement BASIC's
unused 'NAME' command. After setting this 2ZAP, entering
'NAME' from BASIC will cause a jump to the address specified
in the NAME jump vector. For example, LOAD RSM2D48/CMD into
high memory with an appropriate memory size protect, using
either the (4049) entry or answer BASIC's 'MEMORY SIZE?'
request. RSM2D's execution address (for a 48K version) is
EE94 hex. Make the ZAPs to the BASIC/CMD file in the usual
way .

BASIC/CMD: 16/72 change: C3 4A 1E C3
to: C3 94 EE C3

With RSM2D (48K version) in high memory, entering 'NAME'
will jump to RSM2D. Now here is the interesing part. To
get back to BASIC gracefully from RSM2D, enter 'G 0072' (Go
to address 72 hex). BASIC's "READY" and its prompt will
appear and the resident BASIC program will still be intact!
Give you any ideas??

Note: This can also be done with NEWDOS 2.1 or TRSDOS 2.3.

Just find the C3 1E 4A (for the "NAME' function) in the
BASIC/CMD file and change it in the same way.

5/63

The Alternate Source Vol.

I, No.

FIRST OFFERING:

TRAKCESS by Roxton Baker

After much ado, we have decided to offer what is perhaps
the most powerful utility yet for TRS-80 disk main-
tenance — TRAKCESS. TRAKCESS was written with
special goals:
® To bring under direct control, with as much
software assistance as is practical, every
capability of the TRS-80’s 1771 Floppy Disk
Controller (FDC).
® To combine these capabilities into powerful
“intelligent” functions whose only limitations
are those of the machine in general, or of the
FDC in particular.

What does it all mean? Good question. With TRAKCESS,

you may:
® Protect diskettes . . . and guess what else?
TRAKCESS is perfect for ‘breaking dewn’
protected diskettes — now you can back
them up!!

® Recover damaged diskettes; read, write, edit,
or create ANY track or sector, standard or not!

® Utilize a super ‘Electric Pencil’ type editing!

® Gain access to previously unaccessible
information embedded in diskettes!

® And more . . .

TRAKCESS is $24.95, but to make it even more affordable,
Roxton has agreed to let you and your friends share the
purchase. For every penny you add (up to five), you will be
licensed to make one copy of the diskette and documen-
tation! Two of you can buy it for $12.48 each! Five of you
will pay just $5.00 each! This is a special arrangement with
particular advantages for the end user in mind. Appreciate
it? Make it a success! Order your copy today, from:

THE ALTERNATE SOURCE 1806 Ada Street Lansing, M| 48910
Phone: 517/485-0344

5/64

5

The Alternate Source Vol. I, No. 5

"ENTRY" Program listing, continued from page 23:

2950 REM=—=mm—m———————— SORT ROUTINE=w e e
2960 C=G:C=C+1:E=1:F=1

2970 PRINT:PRINT "***NOW SORTING***" :PRINT

2980 C=C/2:C=INT(C)

2990 IF C=0 THEN GOTO 3090

3000 D=G-C

3010 FOR K=1 TO D

3020 E=K+C:W$=W$ (E) :W=W(E) : F=K

3030 IF W$(F)<=W$ THEN GOTO 3060

3040 E=F+C:W$(E)=W$(F) :W(E) =W(F) :F=F-C

3050 IF F>1 THEN 3030

3060 LET E=F+C:W$(E)=W$:W(E) =W

3070 NEXT K

3080 GOTO 2980

3090 RETURN

3100 FOR I=1 TO 6

3110 INPUT#-1,H$

3120 PRINT H$

3130 NEXT I

3140 END

3150 REM~===~ PRINT CLASS LIST AND SUMMARY ON T,INE PRINTER----—
3160 PRINT "TURN ON LINE PRINTER AND HIT THE 'P' KEY."
3170 LET A$=INKEY$:IF A$="" THEN 3170

3180 IF A$<>"P" THEN RETURN

3190 LPRINT TAB((95-LEN(TN$))/2) TN$:p=9

3200 LPRINT TAB((95-LEN(D$))/2) D$

3210 LPRINT " "

3220 LPRINT "NUMBER"; TAB(10) "NAME CODE";TAB(25) "RAW SCORE";
3230 LPRINT TAB(40) "% SCORE"; TAB(60) "GRADE"
3240 LPRINT STRING$(100,"*")

3250 LET P=P+3

3260 FOR I=1 TO G

3270 LPRINT I; TAB(10) SN$(I);

3280 LPRINT TAB(25) ;USING"##4";S(I);

3290 LPRINT TAB(40) ;USING"###";P(I);

3300 LPRINT TAB(60) ;USING"#.##";L(I) :P=P+1

3310 IF P>50 THEN GOSUB 3550

3320 NEXT I

3330 REM PRINT DESCRIPTIVE STATS

3340 IF P>42 THEN GOSUB 3550

3350 LPRINT " ":LPRINT "“SUMMARY"

3360 LPRINT " "

3370 LPRINT "AVERAGE SCORE ="; :LPRINT AV,

3380 LPRINT "ST. DEVIATION ="; :LPRINT SD

3390 LPRINT "HIGHEST SCORE ="; :LPRINT XM,

3400 LPRINT "LOWEST SCORE ="; :LPRINT XL

3410 LPRINT "KR-21 RELIABILITY =";:LPRINT R,
3420 LPRINT "ST. ERROR OF MEASUREMENT =";:LPRINT SQR(1-R) *SD
3430 P=P+5:1IF P>42 THEN GOSUB 3550

3440 REM PRINT GRADE SCALE

3450 LPRINT " ":LPRINT "GRADE SCALE CALCULATION"
3460 LPRINT " "

5/65

The Alternate Source

(cont

inued...)

3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580

LPRINT "$AV=";X1,

LPRINT " "

"$SD=";52,

FOR Z=4.,5TO 0 STEP -.5
LETX=(Z-2A) /SZ*S2+X1:LPRINTTAB (15) Z; TAB(25) "=";TAB(30) X

NEXT 2

LET P=P+15
GOSUB 3550
RETURN

REM END OF PAGE
FOR J=1 TO 72~P
LET P=8

RETURN

:LPRINT "

"Z'=";ZA,

Vol. I, No. 5

"gz'=",37

":NEXT J

"PENRAM" Program listing, continued from page 48:

06070
06080
06090
06100
06110
06120
06130
06140
06150
06160
06170
06180
06190
06200
06210
06220
06230
06240
06250
06260
06270
06280
06290
06300
06310
06320
06330
06340
06350
06360
06370

CONTD1 LD
AND
JR
LD
CALL

CONTD2 LD
LD
LD
CALL

MVLOPA LD

~

A, (LSTARW)
A

NZ ,CONTD2
BC,272
AADDR

HL, (EDCUR)
(HL) ,BLANK
HL, (ADDR)
MAKSTR

A,15
HL,3C40H
DE, 3CO0H
BC,37H

BC,9
HL,BC
DE,HL
HL,BC
DE,HL
A

NZ ,MVLOPA

HL,LINE16
(CURPOS) ,HL
HL,STRPLC
OUTSTR

BC, 16

AADDR
AHOMAD

5/66

;SEE IF LAST SCROLL WAS
;DUE TO CURSOR UP.

;GO IF NOT.

;MUST FIX ADDR.

;ADD 272 TO IT.

;ADDR IS CORRECT HERE.

; REMOVE OLD CURSOR.

;GET ADDR TO DUMP.

;MAKE DUMP STRING OF IT.
;SCROLL BOTTOM 15 LINES

; UP, MOVING ONLY THE
; LEFT 55 CHARACTERS.

;POINT TO NEXT LINE.

;AND WHERE IT WILL GO.

;BACK IF 15 NOT DONE.

;POINT TO LAST LINE.

;PRINT DUMP STRING THERE.
;SUB 16 FROM ADDR, HOMADD

The Alternate Source

Vol. I, No. 5

(continued...)

06380
06390
06400
06410
06420
06430
06440
06450
06460
06470
06480
06490
06500
06510
06520
06530
06540
06550
06560
06570
06580
06590
06600
06610
06620
06630
06640
06650
06660
06670
06680
06690
06700
06710
06720
06730
06740
06750
06760
06770
06780
06790
06800
06810
06820
06830
06840
06850
06860
06870
06880

e Ne NB Ne Ne NE WP we NP NS we %o we

’

LD A1 ;NOTE SCROLL CAUSED BY
LD (LSTARW) ,A ; DOWN-ARROW,
RET

SUBROUTINE MAKSTR EXPECTS TO RECEIVE AN ADDRESS IN HL.
IT FORMS THIS ADDRESS AND THE 16 BYTES OF DATA STARTING
THERE INTO AN ASCII STRING AT STRPLC . IF THE TYPE OF
DUMP REQUIRED IS HEX, THEN EACH CHARACTER BLOCK (THERE
ARE 16 OF THESE AFTER THE ADDRESS STRING) WILL CONTAIN
THE ASCII REPRESENTATION OF THE BYTE IN MEMORY. IF THE
TYPE OF DUMP IS ASCII, THEN EACH BLOCK WILL SIMPLY
CONTAIN THE ASCII CODE OF THE BYTE IN MEMORY. SPACES
ARE ADDED SO THAT EITHER WAY EACH CHARACTER BLOCK TAKES
UP THREE POSITIONS. A TOTAL OF 64 BYTES IS REQUIRED TO
HOLD THIS STRING AND ITS '03' TERMINATOR.

MAKSTR PUSH HL ;SAVE ADDRESS.
PUSH HL
POP IX ;PUT IT IN IX.
POP BC ;GET MSBYTE OF ADDRESS.
LD HL,STRPLC+3 ;LAST DIGIT OF ADDRESS.
CALL BSTRNG ;BC INTO ASCII AT HL- .
’
LD HL,STRPLC+4 ;POINT AFTER ADDRESS.
LD (HL) ,':" ;PUT : AFTER ADDRESS.
INC HL
LD (HL) ,' ' ;PUT SPACE AFTER ADDRESS.
’
INC HL ;POINTS TO 1ST CHAR. BLK.
LD B,16 ;WILL DO 16 CHAR. BLOCKS.
CHRBLK LD (HL) ,' ;EACH START WITH BLANK.
INC HL
LD C, (IX+0) ;GET BYTE AT ADDRESS.
LD A, (HATYPE) ;CHECK DUMP TYPE.
AND A
JR NZ,ACHAR ;GO IF ASCII DUMP.
CALL ASCII ;HEX DUMP REQ'D.
LD (HL) ,D ;FIRST DIGIT OF BYTE.
INC HL
LD (HL) ,E ;SECOND DIGIT OF BYTE.
JR CHRDN ;ONE BLOCK DONE.
s
ACHAR CALL VALASC ;ASCII DUMP. CHECK CHAR.
LD (HL) ,A ;PUT FINAL CHAR IN STRING
INC HL
LD (HL) , "' ! ;FOLLOW WITH BLANK.
’
CHRDN INC IX ;DONE WITH CHAR. BLOCK. :
INC HL ;POINT TO START NEXT BLK.
DINZ CHRBLK ;DO NEXT ONE. '
’

5/67

The Alternate Source Vol. I, No. 5

(continued...)

06890 LD (HL) ,0AAH ;ONE CHAR. FOR BORDER,
06900 INC HL

06910 LD B,8 ;EIGHT CURSOR-ADVANCES
06920 TRALER LD (HL) , 19H ;ATEND RESULT IN STRING
06930 INC HL ; PRINTING TO END OF
06940 DJINZ TRALER H LINE MINUS ONE.
06950 ;

06960 LD (HL) ,03H ; TERMINATOR OF STRING.
06970 RET ;END OF MAKSTR.

06980 ;

06990 ;

07000 ; SUBROUTINE BSTRNG CONVERTS THE TWO BYTES IN BC INTO AN
07010 ; ASCII STRING OF FOUR HEX DIGITS WHICH IT LOADS INTO
07020 ; HL-3, HL-2, HL-1, HL.

07030 BSTRNG CALL ASCII ; CONVERT BYTE IN C.
07040 LD (HL) ,E

07050 DEC HL

07060 LD (HL) ,D

07070 DEC HL

07080 LD c,B ;NOW CONVERT B.

07090 CALL ASCII

07100 LD (HL) ,E

07110 DEC HL

07120 LD (HL) ,D

07130 RET

07140 ;

07150 ;

07160 ; SUBROUTINE ASCII TAKES A BYTE IN C AND RETURNS, IN DE,
07170 ; THE ASCII CODES REPRESENTING ITS TWO DIGITS.

07180 ASCII LD a,C

07190 CALL SBRASC ;DO FIRST 4 BITS.
07200 LD E,A

07210 LD aA,C

07220 RRCA ;BRING NEXT 4 OVER.
07230 RRCA

07240 RRCA

07250 RRCA

07260 CALL SBRASC ; CONVERT THEM TOO.
07270 LD D,A

07280 RET

07290 ;

07300 SBRASC AND OFH ;CHANGE LOWER 4 BITS OF
07310 OR 30H ; A TO ASCII BYTE.
07320 cp 3aH

07330 RET c

07340 ADD 2,07

07350 RET

07360 ;

07370 ;

07380 ; SUBROUTINE OUTSTR CALLS BYTDIS TO PRINT A STRING
07390 ; POINTED TO BY HL AT THE CURRENT CURSOR POSITION.
07400 ; IT RECOGNIZES 00, 01, 02, OR 03 AS A TERMINATOR.

5/68

The Alternate Source Vol. I, No. 5

(continued...)

07410 OUTSTR LD A, (HL) ;GET CHAR. FROM STRING.
07420 cp 04 ;ONE OF THE TERMINATORS?
07430 RET c ;RETURN IF SO (0-3).
07440 CALL BYTDIS ;ELSE PRINT IT.
07450 INC HL

07460 JR OUTSTR ;GO DO NEXT BYTE.
07470 ;

07480 ;

07490 ; AADDR - A UTILITY THAT ADDS BC TO ADDR.

07500 AADDR LD HL, (ADDR)

07510 ADD HL,BC

07520 LD (ADDR) ,HL

07530 RET

07540 ;

07550 ;

07560 ; AHOMAD - A UTILITY THAT ADDS BC TO HOMADD.

07570 AHOMAD LD HI,, (HOMADD)

07580 ADD HL,BC

07590 LD (HOMADD) ,HL

07600 RET

07610 ;

07620 ;

07630 ; SADDR - A UTILITY THAT SUBTRACTS BC FROM ADDR.
07640 SADDR LD HL, (ADDR)

07650 XOR A

07660 SBC HL,BC

07670 LD (ADDR) ,HL

07680 RET

07690 ;

07700 ;

07710 ; SHOMAD - A UTILITY THAT SUBTRACTS BC FROM HOMADD.
07720 SHOMAD LD HL, (HOMADD)

07730 XOR A

07740 SBC HL,BC

07750 LD (HOMADD) ,HL

07760 RET

07770 ;

07780 ;= = = = = = = = = & e e e e e e e e .-
07790 ; MESSAGES

07800 ;

07810 INMSG DEFM ' ADDRESS 2"

07820 DEFB 03

07830 ;

07840 PENMSG DEFM '~ PENRAM-'

07850 DEFB 03

07860 ;

07870 ;

07880 END STARTP

07890 j= = = = = = = = = = = m e m e e e o e e e e e - -

5/69

The Alternate Source Vol. I, No. 5

BULLETIN BOARD
NEW PRODUCTS

DISK KEYPLUS is a powerful collection of utilities that
can be turned on or off in just two keystrokes. DISK
KEYPLUS supports auto-repeat, lowercase video software,
restoration of lost Basic programs, single keystroke user
definable strings, Basic shorthand, direct graphic character
input, lowercase without shift, and more! DISK KEYPLUS is
available for $19.95, non-disk KEYPLUS for $14.95. Write
to: SJW, Inc., Box 438, Huntington Valley, PA, 19006 or
phone (215) 947-2057.

PROgrammer is an excellent utility for Level II users
who are tired of writing programs the hard way: it's a
small machine language routine that, once loaded, will
provide renumber functions, block moves , appending
additional routines from tape, packing of the program, and
block deletes. PROgrammer also includes a keyboard debounce
routine. For simplified usage, a single keystroke is all
that is needed to invoke PROgrammer. Available now from
Rational Software, 963 E. California Blvd, Pasadena, CA,
91106, for just $25.00.

TERMCOM hardware allows Level II users to utilize
timesharing systems without Radio Shack's Expansion
Interface and RS-232 board. The hardware may also be
connected to Expansion Interfaces. Modems, serial printers
or other peripherals can also be connected to the system.
Software includes full paging, scrolling, automatic memory
buffer overflow protection, uploading and downloading files
from disk and variable loading rates. For tabular material,
automatic left or right justification may be specified to
keep charts readable. Software is available on cassette or
diskette and may be purchased independently of hardware.
More information, including complete documentation ($10) 1is
available from STATCOM Corp., 5758 Balcones Drive, Suite
202, Austin, TX, 78731.

SUPER DIRECTORY will allow disk users to simply type
"D" and enter to access a menu of commands. Another single
keystroke will allow the wuser to: RUN any program by
entering the index number displayed by the program name,
even machine language programs. If the program name has a
/BAS extension, BASIC will be loaded first. KILL a file by
entering the program index number while in KILL mode. FREE,
to determine number of free grans and files. PRINT to print
out the directory on your parallel printer. SUPER DIRECTORY
is a fast acting machine language program for TRSDOS or
NEWDOS users, and is available for only $9.95 from Mediamix,
Box 8775, Universal City, CA, 91608.

5/70

The Alternate Source Vol. I, No. 5

HELP!

"I have not been able to get my Radio Shack screen
printer to display material in a machine language
environment. It will just take off and print a screen full
of garbage. Best I can tell, it loses its line synch and
everything gets mixed up royally. If anyone is aware of a
program or patch, it sure would be nice!" HELP can be sent
to TAS, 1806 Ada Street, Lansing, MI 48910 and will be
appreciated.

"I've got one of those pet peeves -- I hate it when my
screen shrinks because of a power surge! I've tried several
things to take care of the problem, but none have worked.
There are several others to try, but I'd go broke. Are
there any readers who have tried something that REALLY
works?" HELP can be sent to TAS, 1806 Ada Street, Lansing,
MI, 48910 and will be appreciated.

PACKER PATCH

TAS recently received notification of an error in
Packer's memory size. The label of the 48K version should
read MEM SIZE = 61315, then type SYSTEM and respond to the
prompt with a /61316, If any wusers are experiencing
problems, this could be the solution.

NETWORK ORDERING

The Alternate Source is now a member of both The Source
and MicroNET. We log onto both systems daily to check the
mail. Feel free to send software orders, comments,
suggestions, complaints, survey responses, etc. via this
method. Our MicroNET User ID is 70150, 255. To reach us
through The Source, mail to TCH565.

LAST MINUTE ODDS & END

The next issue of BTI and TAS are currently under
production -- look forward to some real exciting articles,
tidbits and discussions. If you're a subscriber, your
mailing label will show a letter on the same line as your
name. This letter indicates the last issue of TAS that your
$9.00 paid for. An "A" means your subscription ends with
issue 6, "B" for issue 7, "C" for issue 8, etc. If any
subscribers wish to renew their subscription BEFORE it
expires, please indicate this in your correspondence to help
avoid confusion and double-mailings. Those persons desiring
first class mailings of TAS should enclose an extra $3.00
to help cover postage.

Page 71

AFTERWARD FOR ISSUE 5

Our biggest issue yet! Unfortunately, we have accumulated some very
prolific writers! Our title page is looking bare.

A lot of exciting things are happening with this issue: NEWDOS/80,
VTOS 4.0 and the Doubler make their appearance. Roxton Baker’s article
”PENRAM” was one stage in the development of TRAKCESS and Texas
was experiencing its worst heat wave in years. Jesse Bob sends his thanks
for helping out.

IN THIS ISSUE

Through the Ins and Qutsof Tapeocoiiiin..
Everything you ever wanted to know about tape 1/0 -- but didn’t know who to ask! Pay
close attention and see if you can identify the five oddball I/ O routines that follow. W 'ritten
by Dennis Bathory Kitsz.

Another Way to Install Machine Language

The boys at the Circle] tell about “The Phantom Line Trick”. Teckniqueis illustrated with
a hexadecimal-decimal conversion program. Written by Jesse Bob Overholt, Proprietor.

DIRBASIC ...ttt ittt ittt ittt neaees

A relocatable blv 1,

ly lang routine to allow access to directories without leaving
Basic. Perfect for TRSDOS users. Written by Bruce G. Hansen.

Making Your Machine Language Programs Relocatable 33

Your programs will now protect themselves, respect other already loaded programs. and
load into the highest available memory. A tutorial by Jack Decker.

VITOS 4.0 Review .. .cvviiiiiiiiiiiietnennennnnannans . ..45

An in-depth and honest report on the most controversial DOS to date. Evaluated by Al
Domuret.

Undocumented Z-80 Opcodes.................. .. ve....53

A complete list of the und ted d by the Zilog Z-80 microprocessor.
Provided by Daniel R. Lunsford.

Floating Point USR ...ttt iiiiennanns

Floating point variables can be transferred between machine language and Basic. This
tutorial points out two methods. Written by Mark T. Longley-Cook.

Speeding Up a Sequential Searchcool.e.

Decrease your processing time by up to 30%. This tutorial tells and explains how. W ritten
by Joni M. Kosloski.

Regular Features:
Editorial RAMbling -- 2; Source’s Mouth - 39; Bit Kickin’ -- 41; Contest -- 55.

TRS-80 Is a trademark of the Tandy Corporation

THE ALTERNATE SOURCE Vol. I, No. 6

Editorial RAMbling...

By Charles Butler

'Other activities' have kept me from being involved
with the Alternate Source for the past month or so. In scme
ways,this has been good. The view obtained from being
within something can be substantially different from the
view obtained cutside the entity. (Hail, Bucky Fuller!) My
position from the peripheral of TAS undoubtedly has colored

the contents of this issue.
Ahkhkkdhhhkhk Ahkhhkkhhkdk AkkAt kAR A A%

We're pleased to announce the winner of the best
article for issue #4 -- Allan Moluf's KILLER., Allan wins
$25.00 in addition to his remuneration for writing the
article. For participating in our contest, Alan
Abrahamson, Vaughn Jupe and Ted Kehoe win certificates that
are worth $10.00 on anything we sell. Thanks for
participating. Don't forget to get votes in for issue five
and for this issue. Please put votes on a separate piece of
paper and include your complete name and address so we may

notify you if you are a winner!
Fhihthkhhhk ER R X TR TRAERA LA S &L

Patches are now available for making Percoms new double
density board compatible with both VTOS 4.0 and NEWDOS/80.
From all indications they have a winner. Many people are
purchasing the board in lieu of more disk drives.
Unfortunately, our complete shipment was sold out before we
received it so we stilldon't have one! Expecting more
though, any day now!

ek AkAAN iR FEAARX A A LR FAAAEARAAS

Regarding our issues on cassette or diskette: We''ve
had a substantial number of problems with loading on both
media. Probably most stem from the fact that we intersperse
various types of programs =-- assembly source and object
code, BASIC and even some text. In addition, some authors
have requested the right to retain the copyright on their
material and prefer that it not be included in magnetic
issues. For these two primary reasons, we are going to
discontinue offering them. Sorry for any inconvenience this

may cause.
AEAEEAAR AL AAARAAATXL KAAREATARS

One gentleman has written Jason Potter about his
student rating system in the last issue. He is using the
system to rate his employees! Sounds great, and is exactly

what we like to see done with good ideas.
FehhhhbEhr% AERAXEKRALS EEXARRAXL

Page 2

THE ALTERNATE SOURCE Vol. I, No. 6

THROUGH THE INS AND OUTS OF TAPE

Dennis Bathory Kitsz
Roxbury , Vermont 05669

Cne of the most maligned aspects of the TRS-80 is its
cassette loading procedure. Interestingly, it is a lengthy
and well thought out piece of coding, a victim of a
combination of poor hardware (an inexpensive casette
recorder), the inclination personal computer owners have to
purchase the least expensive tapes they can find, and the
lack of foresight on the part of the engineers designing the
routines. But there's no question that with a good tape
recorder and reasonable tape, it works well. Here's how.

The routine to read and accept serial information is
fairly convoluted, collapsed to about a dozen major CALLsS.
We will start with the SYSTEM command; since BASIC programs
have other bytes to juggle (looking for out of memory
errors, etc.), we won't tackle its major routines.

The SYSTEM module

The SYSTEM command is evaluated by the BASIC
interpreter, and its control routine is entered at 02B2. If
you don't want to know how this command gets to work, then
skip right to the tape loading routine two paragraphs below.
An initial CALL is executed to DOS link 41E2, which in Level
II merely executes a RETurn. The stack is set up at 4288,
and another CALL executed to 20FE, which checks the DOS link
at 41C1, picks up the "device type" (video, tape, or printer
- video at this time), displays a carriage return, checks
and saves port FF status (32- or 64-character mode and
cassette state), clears the accumulator, and returns. This
is preparatory housekeeping.

The accumulator is set up with a star, it is displayed
(with more housekeeping), and the line-input routine is
CALLed from location 1BB3. This is the same routine used
for INPUT statements, and it displays a question mark,
evaluates the input line, discards everything after certain
punctuation, and returns the evaluated line to the CALLing
program. If a BREAK is discovered, the program returns to
READY. Spaces, line feeds, tabs, etc., are cleaned out, and
a syntax error is declared if no alphanumeric characters are
found. If a slash (/) is found, the SYSTEM program jumps
past its loading routines, picks up the start address from
40DF (more about that later), cleans out blanks again, and
evaluates the string after the slash as an integer (a CALL
to 1E5A). The whole business starts over if a non-numeric

6/3

THE ALTERNATE SQURCE Vol. I, No. 6

string is found. If, at last, the program does discover
that a number was input, the SYSTEM module is executed from
the starting address stored at 40DF.

Build-A-Byte

The first major loading call is to 0293, which searches
for a sync byte. Since this will eventually call the
"build-a-byte" routine, let's move there first. It begins
at 0241; BC and AF registers are saved, then:

0243 DB FF IN A, (FF)
0245 17 RLA

0246 30 FB JR NC,FB
0248 06 41 LD B,41
024A 10 FE DINZ FE

Port FF is checked repeatedly by inputting the value to
the accumulator and rotating that value into the carry flag.
If no carry is found - i.e., no "one" bit has yet triggered
port FF - the program loops back to 0243, Once a bit is
found, the B register is loaded with 41, and a "waste time"
loop is executed at 024A (a total of just under 500
microseconds). A CALL is then executed to 021E. Let's have
a look at that:

021E 21 00 FF Lp HL,FF00
0221 3A 3D 40 LD A, (403D)
0224 A4 AND H

0225 BS OR L

0226 D3 FF ouT (FF) ,A
0228 32 3D 40 LD (403D) ,A
022B Cc9 RET

This curious subroutine seems to stumble through
checking port FF for its video state, then resetting the
OUTSIG flip-flop (see the Technical Reference Handbook for
details on this circuitry). Isn't a byte ANDed with FF and
ORed with 00 merely itself? True enough, but since this is
also called as a subroutine entering at 0221, with a
different value for HL, the complex AND/OR strategy makes
sense.

So at this point we have picked up a bit from tape,
delayed, and reset the flip flop, readying it for the next
bit to trigger it. Another delay loop follows (over 850
microseconds), and a byte is input to A from port FF:

0253 DB FF IN A, (FF)
0255 47 LD B,A
0256 Fi POP AF

6/4

THE ALTERNATE SOURCE Vol. I, Nc. 6

0257 CB 10 RL B
0258 17 RLA
0252 F5 PUSH AF

The input byte is saved in the B register, and the
previously saved value of A is restored from the stack.
Here is a wonderful piece of serial-to-parallel conversion -
a sort of software shift register. Bit 7 of port FIF was
input to A and saved in B, and is then rotated left into the
carry flag. Then the accurulator is rotated left, bringing
the state of the carry flag into bit 0 of &, The
accumulator is then saved onse more on the stack. Another
CALL to 021E resets the port FIr flip-flop, both registers
are restored, and the subroutine returns to the calling
program.

You'll notice that at this point we only have one bit
saved in the accumulator. An eight-iteration loop would be
necessary to create a whole byte...and it will be done. But
for the moment let's see how this routine is wused in the
initial syncing program, which we were about to enter at
0293.

The routine's first action is to CALL 01FE. This is a
detailed routine to determine the drive number and other
parts of the syntax, the state of port FF (again), select
the drive and get it moving. Examining the code will show
that it also uses the routine entered at 0221, but with a
value of FF04 in HL; this routine won't be covered here, but
it is worth looking at it.

The find-sync-byte routine thus turns on the tape,
saves the HL register, clears the accumulator, and calls the
"build-a~-byte" routine at 0241, Since this is the
synchronization process, no loop value is specified:

0297 AF XOR A
0298 CD 41 02 CALL 0241
029B FE A5 cp A5
029D 20 r9 JR NZ,F9

It continually seeks bits, endlessly rotating the
accumulator until it assembles a serial stream which matches
A5 (i.e., binary 10100101 - nice and symmetrical). This
routine is so accurate, in fact, that whenever tape motor
start-up is not a consideration, the leader consisting of
zero bytes would be unnecessary. The leading "1" of AS
serves as a kind of serial "start bit" - and the routine at
0241 handles it from there.

Any kind of a match to sync byte A5 might be found,
though, since the serial stream coming in from the tape does

6/5

THE ALTERNATE SOURCE Vol. I, No. 6

not distinguish start and end of byte. For example, the
byte pattern "DD 28" also contains an "A5" embedded in it.
As a serial stream, DD 28 is -

1101110100101000
eeass10100101...

- with the A5 appearing at the junction of DD and 28. So
once the matching A5 is found, a return is executed to the
main SYSTEM loading module. That module then CALLs a
subroutine at 0235, which is a gussied up bit-reader. BC
and HL are saved, then:

0237 06 08 LD B,08
0239 CD 41 02 CALL 0241
023C 10 FB DINZ FB

There's the byte read... read a bit with eight iterations.
HL and BC registers are restored, and the subroutine returns
to the main program.

Loading the Code
The SYSTEM module now compares the byte it created with

the value 55, the code assigned to machine-language
programs. It loops until it finds that code, then proceeds:

02D8 06 06 LD B,6
02pa 7E LD A, (HL)
02DB B7 OR A
02DpC 28 09 JR Z,09
02DE CD 35 02 CALL 0235
02E1 BE Cp (HL)
02E2 20 ED JR NZ ,ED

Above, the B register is loaded with the number of
characters to be found in the SYSTEM program's name. The
accumulator is set up with the first character of the name
as entered on the *? command 1line. The accumulator is
tested for zero, and skips out of the loop when the end of
the entered name is found. Each character following the
name is read into the accumulator (CALL 0235) and compared
with each letter of the entered name. If at any point the
entered name does not match the name on tape, the program
goes back to searching for hex value 55 (machine program
indicator), and the name search process begins again.

There is a minor flaw in this process. Let's look at
the succeeding lines of code:

02E4 23 INC HL

6/6

THE ALTERNATE SOURCE Vol. I, No. 6

02ES5 10 F3 DINZ F3

This coding increments the HL register to the next
character and loops back, looking for a total of six letters
in the name. But what if the rachine program code (55) is
found, and one or more characters of the name match, but the
rest do not match? There is no provision in this routine to
decrement the L register pair ... which means that, if only
part of a correct nare has been found, the progran will
begin its search anew until it finds a program that mratches
only the *last part* of the entered nare! This is the
reason the SYSTEM routine is not always able to search until
it finds the correct progran, the way the BASIC load does.

Let's assume the best - that a nmachine progran was
found with the name as entered from the keyboard. 2 CALL is
then made tc 022C, where the star or space at 3C3F is
toggled (XORed) with OA, Star XOR 0OA is a space, and space
XOR 0A is a star; easily done.

The SYSTEM module continues -

02EA Cce 35 02 CALL 0235
02ED FE 78 Ccp 78
02EF 28 B8 JR Z,B¢
02F1 FE 3C cp 3C
02F3 20 F5 JR NZ,F5

~ searching for either 78 (end of program code) or 3C
(beginning of data block code). If 78 is found, the progranm
skips back to 02A9, where a CALL is executed to 0314. This
subroutine merely reads the last two bytes on tape into the
HL register, preparing the start address. This is saved at
40DF, the cassette recorder is turned off (CALL 01F8), and
the SYSTEM module is re-entered *from the start* at 02B2.
This module is a continuous loop, allowing a group of
machine language programs to be entered sequentially. Only
the presence of the slash-start address combination will
break out of the loop.

If a 3C is found, the beginning of a block of machine
code is assumed. (If neither is found, the program loops
until it finds one or the other). Here's a snippet of code:

02F5 CcDh 35 02 CALL 0235
02F8 47 LD B,A
02F9 CDh 14 03 CALL 0314
02FC 85 ADD A,L
02FD 4F LD C,A

A byte is read and saved in B. At 0314, two bytes are read
and saved, respectively, in the HL register pair. These

6/7

THE ALTERNATE SOURCE Vol. I, Ne. 6

three bytes are, first, the number of bytes to read, and
second, the two-byte starting address of the bLlock. The
0314 subroutine leaves the value transferred tc H in the
accumulator; to it is added the value in L, and this number,
sans carry value, is saved in the C register. The C
register will be used to calculate the checksum for the
block being read.

Curious Checksunm

Each succeeding byte is read from tape and placed at
the address now specified by HL. That byte is also added to
the C register to update the simple checksum. HL is
incremented to the next contiguous address, and the loop is
iterated wuntil B (the number of bytes to read in the block)
reaches zero.

When the block is fully read, another byte is read from
tape. This is the checksum byte, and should match the last
updated value in the C register. If it does match, the
program loops back, toggles the star, and begins the search
for end-of-program (78) or block header (3C) anew.

A correct checksum byte, curiously enough, is not a
necessary element of the SYSTEM module. If the checksum is
incorrect, the program will display a "C" at video location
3C3E, and loop back regardless to continue reading the
program from tape. I first noticed this action when a
gentleman from New Hampshire called; he had been using my
tape-duplication routines to make a corrected copy of a
machine language program. He had loaded the tape, returned
to BASIC, then POKEd in a few byte changes. He then
continued with the duplication. When he loaded the tape
later on, he got a "C" error message on the screen ... but
the program continued to load and did execute properly. The
checksum was wrong because of the byte changes he had made,
but the program, checksum notwithstanding, was read and
loaded completely.

Let's take a look at that final portion of code:

02FE CD 35 02 CALL 0235
0301 77 LD (HL) ,A
0302 23 INC HL
0303 81 ADD a,C
0304 4F LD c,A
0305 10 F7 DINZ F7
0307 CD 35 02 CALL 0235
0302 B9 cP c

030B 28 DA JR Z,DA
030D 3E 43 LD A,43

6/8

THE ALTERNATE SOURCE vol. I, No. 6

o30r 32 3E 3C LD (3C3E) ,A
0312 18 D6 JR D6

Overall, these routines give the appearance of being
reasonable and reliable, and they shculd be. What, then,
gives rise to the tape problems? Mostly the timing loop in
the 0235/0241 subroutine. The values placed in the B
register at 0248 and 024F are too short for low-grade audio
processing. Details of the audio processing will be
presented in an upcoming issue of 80 Microcomputing (forgive
me, Charley), but simply stated, the audio waveform coming
in from tape "rises" too slowly for the fast bit-check loop
at 0251 to catch. A "one" might come through, but it comes
through too laggardly for port TFF to have flipped into
place.)

Special Loaders

This was initially one of the mysteries of TRS-80
operation. Microchess was produced with a loader, then
others quickly followed, mysteriously taking control of the
machine and locking it up completely.

Let's now take a look at some of these special loaders,
which will be designated Loaders A, B, C, D, and E in order
to help then continue to do the job they were supposed to -
protect software.

loader A sets up a stack at 5000, clears the
accumulator, and calls ROM to turn on the tape recorder and
find the sync byte. It places a star on the bottom of the
screen, sets up the HL register to receive the program, and
prepares register C to perform simple checksum. A byte is
read, it is saved in memory, and the checksum is created as
in the SYSTEM mode. Then:

4D25 7cC LD A,H
4D26 1F RRA

4D27 23 INC HL

4D28 3E 2A LD A,2A
4D2A DA 2F 4D Jp C,4D2F
4D2D 3E 20 LD A,20
4D2F 32 FD 3F LD (3FFD) ,A
4D32 3E 4C 1D h,4C
4D34 BC cr H

4D35 C2 1F 4D JP Nz ,4D1F
4D38 3E FF LD A,FF
4D3A BD Cp L

4D3B C2 1F 4D JP NZ,4D1F
4D3E B9 cp C

4D3F c2 00 00 Jp NZ,0000

6/9

THE ALTERNATLE SOURCE Vol. I, No. 6

4D42 CD F8 01 CLLL 01F8
4D45 C3 80 47 Jp 4780

The strange appearance of RRA has nothing to do with
rotating incoming bits, Rather, since the accumulator
contains the H register value, each page (256 bytes) of
information will change the high page value by one.
Consequently, the high page will alternate between odd and
even values, and the least significant bit, rctated into the
carry flag, will trigger the display-star or display-space
routines at 4D2F,

Finally, this somewhat awkward loader does a pair of
compares to see if it has yet reached 4CFF, the end of the
program load. If not, it locps back and continues; if so,
it examines the checksur in C. Amazingly enough, it goes
back to MEMORY SIZE? if there is a checksum error! There's
no tampering with this programn. A successful 1load is
followed by a jump to the procran's beginning at 4780.

Loader B is virtually identical to Loader A, except
that the beginning of the program is found at 41FD instead
of 4780.

Loader C is of a more interesting variety. It is
written entirely without calls to ROM, because it is capable
of loading into a Level I or Level II TRS-80. Less
fortunately, the ROM timing errors are not corrected, so the
chances of loading this program on a marginal machine are
not at all improved. The stack is prepared, and a block of
memory is cleared from 5800 to the end of potential RAM at
FFFF. My only guess as to the reason for this is that the
authors wish to wipe out any programs such as monitors or
disassemblers, as the clearing byte (A5) does not strike me
as otherwise meaningful.

The tape is then turned on, and a pattern of three
asymmetrical and two symmetrical sync bytes is found (B1,
83, 79, 5a, 00). Again, the choice strikes me as arbitrary,
and may be the authors' way of identifying their own code.
If these bytes are found, the progran continues; if not, the
entire five-byte pattern is sought again.

As in the other loaders, register C is set to zero for
use as a checksum byte. The program load point is set high
in memory (747F), and a byte is read. Here is a part of the
code:

433p CD 8F 43 CALL 438F
4340 77 LD (HLY ,A
4341 32 3F 3C LD (3C3F) ,A
4344 81 ADD A,C

6/10

THE ALTERNATE SOURCE Vol. I, Ne. 6

4345 4F LD c,A
4346 2B DEC HL

4347 7D LD A,L
4348 3c INC A

4349 C2 53 43 JP NZ,4353
434C CD 8F 43 CALL 438F
434F B9 CcP c

4356 C2 66 43 Jp NZ,4366

The secret to this portion of code rests in address
4346. Unlike most other 1loaders, this one loads (and
displays) the *last* byte of cede first, moving backwards
thrcugh memory. (438F is the location of the byte read
subroutine). When the page is crossed (4346-4348), the
checksum is evaluated; if the checksum is incorrect the
program jumps to 4366, where an error message is displayed
and the machine locks up.

The user's display is worth noting:

4353 7c LD A,H
4354 32 3E 3C LD (3C3E) ,A

This loader actually displays the ASCII equivalent of the
page of memory being loaded with data ... and it looks like
an alphanumeric countdown as the program is fit into place.

Finally, Loader C does a comparison for the end of the
first major load block, changes the value of H, and loads
the next block. It then overwrites critical portions of the
load routine, effectively obscuring the loading and entry
point of the program. Interrupts are disabled, and the
process moves out of the loader into the main program.
Interestingly, the authors forgot to turn the tape recorder
off.

Loader D's byte read is RAM-based to correct the timing
errors in the original ROMs. (The new ROMs, by the way,
have corrected these problems, the engineers finally
admitting what many of us had claimed all along - that it
wasn't the fault of "the other brand" of tape instead of
expensive "certified" cassettes.) This altered code looks
instead like this:

4337 DB FF IN A, (FF)
4339 17 RLA

4337 30 F6 JR NC,F6
433C 06 41 LD B,41
433E 10 FE DINZ FE
4340 Cb 1E 02 CALL 021E
4343 06 50 LD B,50
4345 10 FE DINZ FE

6/11

THE ALTERNATE SOURCE Vol. I, No. 6

4347 05 14 LD B,14
4349 DB FF IN a, (FF)
434B 10 FC DJINZ FC
434D 47 LD B,A
434E F1 POP AF
434F CB 10 RL B
4351 17 RLA

4352 F5 PUSH AF

A comparison of this with the Microsoft loader in ROM
reveals not only a change in the timings (at Loader D 4343,
ROM 024F), but also a loop where port FF is loaded
redundantly into A twenty times (4347-434B) . The timing for
this (as contrasted with the timing in ROM at 024F to 0253)
is about 900 microseconds, a slightly longer wait for the
audio tape to trigger the INSIG flip-flop. The presence of
all the input data on the screen is psychologically
reassuring.

Finally, Loader E is of an entirely different sort.
First, some code:

BEFE 3E 04 LD A4
BFOO D3 FF ouT (FF) ,A
BFO02 DB FF IN A, (FF)
BFO04 17 RLA

BFO05 30 FB JR NC,FB
BFO7 06 XX LD B, XX
BF09 10 FE DINZ FE
BFOB 06 09 LD B,9
BFOD 3E 04 LD a,4
BFOF D3 FF ouT (FF) ,a
BF11 DB FF IN A, (FF)
BF13 17 RLA

BF14 00 NoP

BF15 38 0C JR c,o0c
BF17 23 INC HL
BF18 2B DEC HL
BF19 10 F6 DINZ F6

This remarkable loader is written for high-speed
operation, setting up the output ports (BEFE and BFOD),
clocking itself with start bits (BFOD) , and then reading a
nine-bit serial stream. Careful timing and self-clocking
are essential in high-speed data I/0, and this vroutine is
capable of reading and writing on ordinary audio cassettes,
with excellent reliability, at better than 2000 baud. The
only point to the instructions at BF17 and BF18, for
example, is the delay introduced by executing them; yet that
timing is very important. The actual timing value at BF07
has been dropped for a measure of protection of this
author’s fine software.

6/12

THE ALTERNATE SOURCE vol. I, No. 6

Conclusion

In sum, the tape read/write routines for the TRS-80 are
efficient and, especially now with special loaders and a
corrected ROM, gquite reliable. pifferent levels of user
prompts, particularly those used by the reverse~loading
module described above, are probably more satisfactory than
flashing stars. A checksum process for BASIC similar to the
SYSTEM module would have been valuable. Finally, by careful
attention tc clocking details, a reliable higher-speed
loader could have been included in the TRS-80.

For those especially interested in high-speed loaders,
I recommend examining the Exatron Stringy-Floppy operating
system, which shows what can be done with equipment designed
for digital operation. It is capable of reliable loading
and saving at rates exceeding 11,000 baud.

With the exception of ILoader D (it is mine), the
special loaders presented are from popular commercial
programs. A bougquet of used typewriter ribbons and cassette
tape, plus a free copy of Keepit 3.1, to the first reader
who can identify the programs using those special loaders.

Leftovers

In the last issue I promised some improvements to the
TRS~80 keyboard scan, including an updated debounce program
to keep up with fast typists. Those changes will appear
next time, along with some polemics about relocatable
programs and the validity of providing source code with
commercial programs. I would appreciate comments from any
readers on the advantages and disadvantages to both wusers
and vendors who provide source code for their programs.
Address correspondence to me at Roxbury, VI 05669.

With B17 Tape Operating System {ver.2)
you can save/load Basic or System tapes
almost 4X faster. Save/ioad Data Arrays

165X faster. Has Automatic Preloader to 6060000060000000000002000

" A]

let you easily use it. Load-&-Go System e ACCEL: trom England. a compiler for Level Il :
programs are standard. You can back-up © TRS-80 BASIC. Compiles integer statements and @
your System tapes with this feature. it ® (unctions 1o fast 280 code, resoives dictionary ®
comes with a 20-page easy-to-understand : search at compile time, more. Graphics can be :
Operating Instruction manual. Licensing o 3000% taster $4495 o
B17 preloader gives your programs being @ ®
sold copy-proof protection plus an edge ® é;:‘n ?%%i:sgg:"&'?se ®
on the competition with a program ® San Francisco. CA 94101 °
which loads much faster. B17 comes : n Francisco. :
with a 15-day UNCONDITIONAL money- ® i o
back guarantee for only $20 + $3 first- e TRS 80 tm Radio Shack/Tandy Corp ®
class postage & handling. Check or 0032060060 000600000002030000

Money Order only. We also Mailorder
new hardware, etc, which saves you $.
40-track 5" drive (bare) is under $255.
Many other items at affordable prices.
SASE brings free information.

ABS SUPPLIERS
POST OFFICE BOX 8297
ANN ARBOR, MICHIGAN 48107
{313) 9711

6/13

[SO
824.95 on diskette 2 drives & 48k Req.
TAS PRESENTS . ..

3 TRAKCESS

1! Written By: Roxton Baker

DOS USERS LOOK HERE

After much ado, we have decided to offer what is perhaps The Most
Powerful Utility Yet For TRS-80 Disk Maintenance. . .
TRAKCESS was written with two very special goals:

A. To bring under direct user control, almost every practical
capability of the 1771 Floppy Disk Controller.

B. To combine these capabilities into super powerful
intelligent’ functions whose only limitations are those of the
user or machine.

‘What does it all mean?’ You ask, Good Question. . .
WITH TRAKCESS, YOU MAY:
@ Protect your own diskettes with special ® TRAKCESS is capable of duplcation
format variations you create! of any sector, of any track including
PROTECTED DISKETTES!
® Smart DUPLICATE command analyzes
every track! (2 drives)

® Utilize a potent "pencil type'editor.

® Recover damaged diskettes; read,
write, edit or create any track or sector,

standard or not! ® PLUS MUCH, MUCH MORE

...

TRAKCESS IS $24.95. For every penny you add (up to five) you will be given a
limited licence to make one copy of the diskette and documentation. This is the first
in a new line of software to be marketed in this manner. The intent of this concept
is to allow you and your friends to share the cost of adding to your software library.

b T’us iS a new Concept. Please comment on it_
‘; SIT/485-0344 oo 517/487-3358
O YESILL BYTE!! Send me trakcess for $24.95 plus___pennies for my licence to make copies. I've included

.5¢for shipping.

O My check’s enclosed. Please bill my MC card 01
O Please send COD Please bill my 1isa card O

1806 ADA STREET | nyame
LANSING, MI 48910 | ADDRESS
e CITY, ST, ZIP

6/14

7

%

THE ALTERNATE SOURCE : vol. I, No. 6

ANOTHER WAY TO INSTALL MACHINC LANGUAGE PROGRAMS

By Jesse Bob Overholt

One night a few weeks ago some of the boys and I were
sitting on the back porch of the CircleJ Ranch house
sipping Dr. Peppers and listening tc Willie Nelson on the
radio. The topic of conversation was simple ways to load
short machine language programs while in BASIC. Billy Fred
said his favorite method was to code the program in DATA
statements and then POKE it into protected RAM. Buck and I
maintained that the best way was to POKE it into a dummy
string, a method previously described in The Alternate
Source. Then Roy, the Weird Wrangler, spoke up.

We call ol' Roy the Weird Wrangler because ever since
he got kicked in the head by a 48 bit word, his pilot
light's been out. "The best way,", Roy said, "is to use the
old Phantom Line Trick." Needless to say, none of us had
ever heard of that one. It took us most of the night and
another six quarts of Dr. Pepper to get him to explain, but
we did it and here it is.

To understand how to use the Phantom Line Trick, it is
helpful to know how BASIC program lines are stored in RAM.
Each line of a program has a four-byte header in front of
it. The first two bytes are the address in RAM of the next
line of the program. Following this is the line number in
two bytes as a binary number. Then comes the rest of the
line, pretty much as typed in except that all BASIC keywords
have been converted into a single-byte “"token". A binary
zero marks the end of the line. By following the chain of
pointers (known to buzzword freaks as a "linked list") BASIC
can rapidly locate line numbers referred to by the user
program. A special pointer at 40A4-5 (16548-9 decimal) is
the head of the chain and always points to the first line in
the program. The last line in the program is followed by an
end-of~program mark consisting of three zero bytes. To get
a better idea how all this works together, let's look at a
simple example. Consider the following program which,
incidentally, was the one that Lucretia Grunge, our local
school marm', used to teach us kids how to count:

10 FOR I = 1 TO 10
20 PRINT I
30 NEXT I

Now let's pry the lids off those 4116's and see how
this program looks in memory. Since it is really hard to
get much detail by looking into a memory chip, the boys and
I have taken Crayolas in hand and produced the following

6/15

THE ALTERNATE SOURCE Vol. I, No. 6

diagram (note that the contents of 40a4-5 may vary with
different DOS's, number of files, etc.):

ADDRESS CONTENTS
40A4 BA 68
Bt
I
68BA I--=>C8 68 0OA 00 01 20 49 D5 31 20
Iecmmmm———— I
I
68C8 Im——m——— >D0 68 14 00 B2 20 49 00
I ——
I
68D0 I--->D8 68 1E 00 87 20 49 00
Im—m e ——— I
I
68D8 I-smmm—— >00 00 00

It was at about this point in the discussion that Willy
Bob nodded off and rocked off the porch. Don't let that
happen to you! By following the diagram (graphics by Harlow
"Wrong-way" Nurn, our local surveyor), it is easy to see how
the program lines link together. All addresses in the chain
are in the standard Z-80 format of least significant byte
first. Notice that the key to this whole scheme is the head
of the chain at 40a4. Without it, BASIC would be unable to
find any of the program. It is here that we can work our
magic. By changing the head of the chain, we can remove one
or more links. If we remove only the first line, the
diagram will look like this:

ADDRESS CONTENTS
4024 C8 68
B I
I
68BA I C8 68 0A 00 01 20 49 D5 31 20
I BD 31 30 00
I
68C8 I--->D0 68 14 00 B2 20 49 00
e I
I
68D0 I-emm——— >D8 68 1E 00 07 20 49 00
Iememm—— I
I
68D8 I---->00 00 00

Notice how the 1line at 68BA has been "cut free".
That's the trick! All of the RAM from 68BA to 68C7 is now
protected from use by BASIC and is available for use by the
user. By changing the size of the first line we can control

6/16

THE ALTERNATE SOURCE vol. I, No. 6

the amount of RAM to be allocated. A REM statement is ideal
for this purpose, since it will take up as many bytes as
there are characters following 'REM' plus six. PEFEK and
POKE provide the tools for manipulating the program. Try
the following example:

10 REM - THIS LINE WILL SOON DISAPPEAR!

20 LIST

30 L$=PEEK(16548) :H%=PEEK(16549) :A%=L%+H%*256
40 POKE 16548 ,PEEK(A%) :POKE 16549 ,PFEK(A%+1)
50 LIST

Key this program in and RUN it. It will LIST, showing
five lines. Then it will LIST again, but only four lines
(20-50) are listed on the screen. Line 10 has vanished into
thin air! Variable A% now points to the memory area
occupied by 1line 10, and may be used to POKE in a machine
language program.

There are several advantages to this method. First, it
does not require any memory to be reserved via the "MEMORY
SIZE" question and is, therefore, less error-prone to use.
Second, it is address independent and will never get in the
way of any other machine language programs that a user might
need, such as drivers, etc. Finally, the memory allocation
can be accomplished quickly and efficiently with a few lines
in BASIC.

However, as Ptomaine Tony, our ranch cook, likes to
say, "Every biscuit has two sides." (I'm not sure what that
means, since Tony's biscuits are a lot like diskettes --
black and flat.) But the Phantom Program Line Trick does
have a couple of drawbacks. First, it works best on short
programs. Long ones will take forever to POKE in and
require too many DATA statements. Another big disadvantage
is that it requires the machine language program to be
position-independent. That's a $4 computer expression which
means a program which can run correctly anywhere in memory.
To do this the assembly language programmer must either play
some complex address-manipulation games or avoid direct
references to addresses within his program. (An article on
some of these techniques is forthcoming.)

Well, there it is. Should you wuse it? You'll Jjust
have to weigh the pros and cons and decide for yourself. In
the meantime, if you want to play with the technique, the
boys and I have whomped up a little program for you. It's a
hexadecimal-decimal converter that converts hex to decimal
and vice-versa. While the program is written for Disk
Basic, Level II users not yet blessed with disk can still
use it by changing it where marked. This program loads the
converter and installs it as USR9. When the function is

6/17

THE ALTERNATE SOURCE Vol. I, No. 6

called with a string argument containing a hex number, it
returns a decimal result. If called with a decimal integer
argument it returns a string argument containing a hex
equivalent. No error checking is done in hex to decimal
conversion =-- decimal numbers greater than 32767 must be
entered as negative nurbers for proper conversion. This may
be accomplished by subtracting 65536 from the number. Hex
numbers from 0000 to FFFF are returned as decimal negative
numbers -32768 tc -1. To get the true decimal value, add
the negative number to 65536.

License-free vuse of this prcgram is granted to any
individual who promises to answer every "Where'd ya get
that?" question loudly andé clearly with "I got it from Jesse
Bob and The Alternate Source." Violators will be restricted
to use of Level I BASIC for 90 days.

Jesse Bob's FREE Example Program

10 "HEXADEC BY THE CIRCLE J SOFTWARE RANCH
* CONVERTS HEXADECIMAL TO DECIMAL
* CONVERTS DECIMAL TO HEXADECIMAIL
* INSTALLED AS USR9 (USR FOR LEVEL II USE)
* WRITTEN IN MACHINE LANGUAGE FOR SPEED
CLEAR 500
CLS
PRINT "NOW INSTALLING 'HEXADEC'"
PRINT "BY THE CIRCLE J SOFPTWARE RANCH"
L%=PEEK(16548)
H$=PEEK(16549)
A%=L%+HE*256
POKE 16548 ,PEEK(A%)
POKE 16549,PEEK (A%+1)

o0 o5 oo B
o

w
[=

0 FOR I%=0 TO 102
READ D%
POKE A%+I%,D%
NEXT I%
PRINT "'HEXADEC' IS INSTALLED!"
PRINT
0 DEFUSR9=A$% o e e Disk BASIC only
0 POKE 16526,L% mmmm——— Level II only

POKE 16527,H%

DATA 231,40,54,205,127,10,62,4,
205,87,40,33,33,65,71,175

DATA 237,111,35,237,111,43,246,48,
254,58,56,2,198,7,18,19

DATA 16,237,62,3,50,175,64,79,
42,179,64,34,33,65,235,33

DATA 211,64,237,176,235,34,179,64,
201,42,33,65,70,35,94,35

hee UTUTee oo a2 00 0o o a0 00 o0 0

o oo g
o o o o

6/18

THE ALTERNATE SOURCE Vol. I, No. 6

100 DATA 86,33,33,65,54,0,35,54,

0,26,214,48,56,19,254,10 110 DATA
56,6,214,7,254,16,48,9,
43,237,111,35,237,111,19,16 120 DATA

232,62,2,50,175,64,201

Examples of Use

PRINT USRI ("FF") <=-=--=-=Displays 255
PRINT USR9(255) e Displays OOFF
A$=USR9(-1) Cmmm—— A$ contains FFFF
AD%=USR9Y ("BAD #") e AD% contains 2989
Z=USR9 ("DEAF") e am e Z contains -8529
PRINT USR9(64000-65535) o e Displays FAQ0

PRINT USR9("CO00")+65535 <=-=---Displays 49152

Save programming time and effort —
with PROgrammer

* PACK *« RENUMBER
* APPEND « MOVE

Powerful, easy-to-use programming tools
for Level i Basic users from:

Rational Software
963 East California Blvd., Pasadena, California 91106

Cassette, $25. California residents add 6% ($1.50) sales tax.
Specify the memory size of your computer when ordering.

6/19

THE ALTERNATE SOURCE Vol. I, No. 6

DIRBASIC PROGRAM
By Bruce G. Hansen

This article describes a machine language program to print
directories and free space of diskettes while in BASIC or
DOS .

This program is self-relocating. For example, no
modifications need be done on the program for it to work
with a 16K, 32K or 48K machine. The program moves itself up
to high memory.

Another feature is that it is completely compatible with
other machine language programs you may wish to use. While
under DOS, just load any other routines and then load
DIRBASIC (one important note - DIRBASIC must be the 1last
program loaded or it will not work.)

(I couldn't get past this point without wondering what would
happen if I wanted to use TWO relocatable programs. So I
had to try it. First, 1 loaded my lower case driver
program. It told me I had to protect memory at 65110. Then
I executed the BOSS program, which is relocatable. It asked
what memory size I would like to protect, so I responded
with the above figure. BOSS then told me to protect memory
at 62310. But I also wanted to have DIRBASIC loaded and
ready, so I executed it. It responded by telling me to
answer the memory size question with 61459, Thinking that
everything had gone smoothly, I proceeded to venture into
Basic, and reserved memory at 61459, as instructed. I then
attempted to det a directory listing of both drives zero and
one, and encountered no problens. So I 1loaded a Basic
program, with the intention of single-stepping through it.
BOSS, however, could not be summoned. A second attempt at
getting a directory of drive zero also failed. Hmmm. Now
that authors are being considerate enough to provide us with
relocatable code, it looks like our next problem will be
figuring out how to make relocatable programs compatible
with each other! Any takers? jmk)

EXECUTING DIRBASIC
The instructions for DIRBASIC are:
From DOS type in:

DIRBASIC fey -

With NEWDOS 2.1 and TRSDOS 2.1 a memory size will need to be
set if going to BASIC. The program will figure the memory

6/20

THE ALTERNATE SOURCE Vol. I, No. 6

size question for you and print it on the screen when the
program is first loaded. With TRSDOS 2.2 and 2.3 no memory
size need be set when going to BASIC, as the program
protects itself. Tc display a directory and free space of a
diskette type in:

SHIFT, UP ARROW and the drive number holding the target
diskette, simultaneocusly.

Since the SHIFT UP ARROW combination is used by NEWDOS to
print the first line of a program, the ELECTRIC PENCIL
control key can be depressed instead of the SHIFT UP ARROW
combination provided the proper hardware modification has
been installed. For example, hitting SHIFT, UP ARROW and the
0 (zero) key will display the directory and free space of
drive number 0 (as will the PENCIL control key and the 0
key) .

The program does use some ROM routines to do data
conversions from integer format to single precision format,
along with some ROM arithmetic functions. I refer you to
the book INSIDE LEVEL II (published by MumfordMicro and
available through TAS) for more information on that subject.

I would suggest not typing in DIRBASIC twice without pushing
the reset button. The program will still work fine but the
second load of DIRBASIC will put the program below the first
one, thus wasting memory.

PROGRAM LOGIC

When "DIRBASIC" is entered from DOS it loads at 5200H. The
first part of DIRBASIC, the relocatable loader and patch
routine, then take over. The program first changes the
memory size to accommodate DIRBASIC. Then all addresses of
jumps and calls are changed to their new high memory value.
Next, the keyboard driver address is saved and then replaced
with the starting address of DIRBASIC. Now whenever the
computer asks for keyboard input, it passes through DIRBASIC
first. The last function of the loader part of the program
is to display the memory size required if going to BASIC.
After that is displayed, the program returns to DOS.
DIRBASIC is executed every time a keyboard response is
inquired by the computer. The registers are saved and a
check is made to see if the SHIFT key or ELECTRIC PENCIL
control key is depressed. I1f neither are depressed, the
program restores the registers and jumps to the previously
saved keyboard driver address. If the SHIFT (and UP ARROW)
key or EP control key is depressed then a check is made for
which number key, if any, are pushed. If none are pushed,
the program jumps to the keyboard driver routine. If a

6/21

THE ALTERNATE SOURCE Vol. I, No. 6

correct key combination occurred then the drive select bytes
at 4308H and 4309H are set. Next the current cursor
position is saved.

The cursor position is saved since a SHIFTED BACK SPACE is
sent out after the free space and directory are printed.
This is done because the SHIFT, UP ARROW, ZERO key
combination is sometimes picked up as a valid keyboard
input. For example, if you typed in "RU" from BASIC and
typed SHIFT, UP ARROW and ZERO to jump to DIRBASIC, the key
combination required for DIRBASIC might be tacked onto the
"RU" typed in from BASIC. This problem is taken care of by
saving the cursor position, restoring the horizontal cursor
position after DIRBASIC is through and returning a SHIFTED
BACK SPACE when exiting DIRBASIC.

The next step is to determine if the selected drive is
available. The call to CKDRV does this by playing with the
floppy disk controller chip registers. Look at the program
listing for more information.

If the selected drive is a valid one, the GAT sector (track
11H, sector 0) is read in via a call to 46DDH. The free
space of that drive is found by surming the number of grans
currently not allocated. The drive number, name and date
are displayed followed by the number of free grans. All
directory sectors are then read in, one at a time. Each is
checked for existing files. DIRBASIC is normally displayed
as a "DIR (I)". Refer to the program listing for
instructions on how to change this if desired.

The first byte of a directory entry will be greater than OFH
and less than OFFH if that entry holds an existing file. If
the first byte of the existing file entry is greater than
7FH, the entry is a FXDE (File's extended directory entry).

After all appropriate file names have been displayed, the
cursor horizontal cursor position is restored and a
character 18H is sent back to the calling program (18H is a
SHIFTED BACK SPACE).

Some of the routines used in DIRBASIC can be useful in other
programs. They are divided into sections.

DOS CALLS

4409H - DSKERR
(Display disk error message)

This routine will display the DOS error stored in the A
register. Whenever a disk I/O routine is called the 2 flag

6/22

THE ALTERNATE SOURCE Vol. I, No. 6

is set if no error occurred. If there was an error, the
error code is in the A register on return from the call.
See chapter 6 of the TRSDOS manual for a 1list of error
codes.

This call will normally return to DOS. To inhibit this and
return to the calling program instead, OR the A register
with 80H before the call.

This routine will normally print an extended error message
when called. To stop this extra information from being
printed, OR the A register with 40H before the call. If the
extended error message is desired, make sure the file is
closed or the message will be unreadable.

4308H - DSKNMB
(Current drive number)

This byte contains the current drive number. It should
contain a 0 for drive 0, 1 for drive 1, etc.

4309H - DRVBIT
(Current drive select bit)

This byte also contains the current drive number . The byte
here has the same bit set as the drive number. Bit 0 is set
for drive 0, bit 1 set for drive 1, etc. The resulting
bytes are 1 for drive 0, 2 for drive 1, 4 for drive 2 and 8
for drive 3.

4467H - DSPMSG
(Display a message)

This is a very useful DOS routine which displays a message
on the screen.

To use this routine load the HL register pair with the
starting address of the message to be printed. The message
must be terminated by a 03H byte or a carriage return (0D
byte) . Then CALL 4467H. For the message to have embedded
carriage returns use a OA in place of a 0OD. This way the
DSPMSG routine can print on many lines from just one call.

402DH - DOSJMP
(Jump back to DOS)

This is not a CALL, but a JUMP address.

6/23

THE ALTERNATE SOURCE Vol. I, No. 6

To return to the DOS READY state, do a JP 402DH. This is
the normal return address. The abnormal or error return
address is 4030H.

46DDH = DSKRD
(Read a disk sector)

This is an extremely useful DOS routine to read any disk
sector.

To use this call, load the HL register pair with the
starting address of a 256 byte file buffer, the D register
with the track number to be read, the E register with the
sector number to be read, the C register with the drive
number to be read and the B register with the logical record
length.

The bytes at 4308H and 4309H must also be set before reading
a sector as described above.

To use the routine CALL 46DDH.

If no error occurs, the Z flag will be set. If an error
occurs, the A register will contain the error code. If a
directory sector was read in, an error will occur and the
error code will be 6. A check should be made when reading
in a directory sector.

ROM CALLS

033AH - WRCHR
(Display a character on the screen)

This ROM routine displays the byte in the A register on the
screen at the current cursor position.

To wuse this routine place the byte to be printed in the A
register and CALL 033AH. This routine is an upgrade from
the display routine at 0033H. The 0033H routine destroys
the DE register pair when displaying, while the 0332H call
leaves all registers in tact.

OACCH - ITOS
(Convert integer data format to single precision)

This- routine will take the integer number stored at
4121-4122H and convert it to the TRS-80's single precision
format. There are also other types of conversions in ROM.
I again refer you to the book INSIDE LEVEL II for more

6/24

THE ALTERNATE SOURCE vol. I, No. 6

information on using ROM calls for arithmetic purposes.

OAOCH ~ SNGCP
(Compare two single precision numbers)

This routine will compare two numbers stored in the single
precision format. The first number is stored at 4121-4124H
and the second in the BCDE register quad.

This call does not affect the two numbers in question, only
the 7Z-80 flags. If the numbers are equal, the Z flag is set,
If the first number is smaller, the S and C flags will be
cleared.

0716H - SNGADD
(Add two single precision numbers)

This routine will add two numbers stored in the single
precision format. The first number is stored at 4121-4124H
and the second in the BCDE register quad. After the call
the result is stored at 4121-4124H.

Care rust be taken so an overflow does not occur. This

results in control being sent to the LEVEL II monitor.

OFBDH - SNGSTR
(Convert a single precision number
to a string of characters)

This routine will convert a number stored in the single
precision format to a string of ASCII characters. The number
to be converted must be stored at 4121-4124H, After the
call the string of characters starts at 4130H and ends with
a 00H byte.

FURTHER COMMENTS

I suggest reading the comments on the program listing for a
more in-depth look at how the program works.

DIRBASIC may just become one of your most useful utilities!

<PROGRAM LISTING BEGINS ON PAGE 26>

6/25

THE ALTERNATE SOURCE Vol. I, No. 6 e

5200

4049
000D
4121

40AF

033
OACC
0aoc

0716
OFBD

5200

5200

5202
5205
5208
5208

3E0D

CD3A03
115103
2A4940
AF
ED52
2B
224940
23

S
115002
19

00100
00110

00130 § DIRBASIC VERSION 1.87 SEP 24,1980 22:43
00140 BY BRUCE G. HANSEN =
001580 -
00160 ;THIS PROGRAM WILL PRINT A DIRECTORY OF ANY DRIVE BY

00170 ;SIMULTANEOUSLY HITTING THE SHIFT KEY, THE UP ARROW KEY AND

00180 ;THE NUMBER OF THE DRIVE TO PRINT THE DIRECTORY (0-3).
00190 ;(OR HIT THE ELECTRIC PENCIL CONTROL KEY INSTEAD OF THE SHIFT
00200 ;UP ARROW COMBINATION) .
00210 ;
00220 ;THE PROGRAM WILL DISPLAY THE DRIVE NUMBER, NAME, DATE, AND
00230 ;FREE GRANS OF THE SELECTED DRIVE, .
00240 o
00250)THE PROGRAM IS COMPATIBLE WITH DVR AND OTHER SUCH TYPES
00260 jOF PROGRAMS IF "DIRBASIC" IS LOADEG LAST.
00270
00280 ;
00290 ;
00300 ,
00310 ;
00320 ORG 5200H ;LOAD PROGRAM HERE
00330 ;
00340 ;
00350 ; DOS ROUTINES
00360 ;
00370
00380 DSKERR EQU 44091 ;DOS ERROR PRINTING ROUTINE
00390 CURDRV EQU 4308H ;CURRENT DRIVE BYTE
00400 DRVBIT EQU 4309H ;DRIVE SELECT BIT
00410 DEPMSG EQU 4467H 3DOS ROUTINE TO DISPLAY A MESSAGE
00420 DOSJMP EQU 402D ;JUMP ADDRESS FOR A RETURN TO DOS
00430 DOSERR EQU 4030H $RETURN TO DOS AFTER ERROR
00440 DSKRD EQU 46DDH ;READ A DISK SECTOR: HL->BUFFER
00450 ;D->TRACK#, E~>SECTOR§, B->LRL
00460 ;C->DRIVE$
00470
00480 5
00490 ; MISCELLANEOUS EQUATES
00500 ;
00510 ;
00520 TOPMEM EQU 40491 ;TOP OF MEMORY
00530 CR EQU ODH ;CARRIAGE RETURN
00540 ARTHBF EQU 41211 3 RAM BUFFER USED BY LEVEL II ROM
00550 ;TO DO ARITHMETIC IN
00560 TYPNUM EQU 40AFH ;TYPE OF NUMBER ROM IS TO PERFORM
00570 ;AN ARITHMETIC OPERATION ON.
00580 :2 FOR INTEGER, 4 FOR SINGLE
00590 ;PRECISION, 8 FOR DOUBLE AND
00600 ;3 FOR STRING
00610 ;
00620 ;
00630 ROM ROUTINES
00640
00650 -
00660 WRCHR EQU 0332aH ;ROM ROUTINE TO WRITE A CHARACTER
00670 ;AND SAVE DE REGISTER PAIR
00680 ITOS EQU OACCH ;CONVERT FROM INTEGER TO SINGLE
00690 s PRECISION FORMAT
00700 SNGCP EQU 0AOCH ;COMPARE TWO SINGLE PRECISION NUMBERS
00710 SNGADD EQU 0716H ;ADD TWO SINGLE PRECISION NUMBERS
00720 SNGSTR EQU OFBDH ;CONVERT A SINGLE PRECISION NUMBER
60730 3TO A STRING OF ASCII CHARACTERS
00740
00750
00760 ; BEGINNING OF RELOCATABLE LOADER MODULE
00770 ;
00780 ;
00790 BEGIN EQU $;BEGINNING OF PROGRAM
00800 ;
00810 THIS PART OF THE PROGRAM (UP TO LABEL "START") IS A
00820 LOADER FOR PATCHING THE MAIN PROGRAM INTO THE KEYBOARD
00830 DRIVER AND RELOCATING IT,
00840

00850 LD A,CR ;LOAD THE A REGISTER WITH A
00860 ;CARRIAGE RETURN
00870 CALL WRCHR JWRITE IT
00880 L DE,ENDADD-START ;GET THE LENGTH OF THE PROGRAM
00890 LD HL, (TOPMEM) {GET TOP OF MEMORY BYTES
00500 XOR A $CLEAR THE CARRY FLAG
00910 SBC HL,DE 1GET NEW TOP OF MEMORY
00920 DEC HL JMAKE THE MEM SIZE ONE LESS THAN PRGM START
00930 LD (TOPMEM) ,HL $SAVE NEW MEMORY SIZE
00940 INC HL 3 INCREMENT TO START OF PROGRAM ADDRESS
00950 PUSH HL 3SAVE IT
00960 LD DE,SECNUM-START ;GET NUMBER OF BYTES FROM START
00970 31OF PROGRAM TO LABEL “SECNUM"
00980 ADD HL,DE 1 CALCULATE NEW LABEL ADDRESS

6/26

THE

5218

529D
52A0

ALTERNATE SOURCE

223753
22F753
228554
228954
114E02

E1l
ES
19

228854
115102

Et
ES
19

224653
225A53
229253
22EES3
220954
227954
E1

ES
113502
19

22DF53
114602

E1
ES
19

227753
11EDO 1

E1
ES
19

223F53
112502

E1
ES
19

22FAS4
11B101

B1
ES
19

220158
2A1640
222C55
bDE1

DDES
DD221640

21DES52
b1

015103
EDBO
21C952
CD6744
DD2B
DD222141
3r02

32AF 40
CDCCOA

110000
010090

00990
01000
01010
01020
61030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730
01740
01750
01760
01770
01780
01790
01800
01810

PopP
ADD
LD

POP

(ADDO1+1) ,BL
(ADD02+1) ,HL
(ADDO3+1) ,HL
(ADDO4+1) ,HL
DE , JMPADD~START

HL
HL
HL,DE

(JUMPO1+1) ,HL
DE, DISKBF-START

HL
HL
HL,DE

{CONT 141} ,HL
(DADOO1+1) ,HL
{CONT2+1) ,HL
(SETSEC+1) ,HL
(DAD002+2) ,HL
(CONT4+1) ,HL
HL

HL

DE, TEXT1-START

HL,DE

(TX00141) ,HL
DE, TEXT2~START

HL
HL
HL,DE

(T001+1) ,HL
DE , CKDRV~START

HL
HL
HL,DE

(CK0G1+1) ,HL
DE, TEXT 3-8TART

HL
HL
HL,DE

(CKERR+1) ,HL
DE, ALTRET-START

HL
HL

HL,DE
(CK002+1) ,HL
HL, (4016K)
(JMPADD) ,HL
X

Ix

(4016H) ,IX

HL,START
DE

BC,ENDADD-START

HL,MEMSIZ
DSPMSG

Ix

(ARTHBF) , IX
A,2

(TYPNUM) ,A
ITos

DE,0
BC,9000H

6/27

Vol. I, No. 6

1SAVE IT IN THE PROGRAM

;GET NUMBER OF BYTES JMPADD IS
3FROM START OF PROGRAM

;GET STARTING ADDRESS OF PROGRAM
$SAVE IT AGAIN

$CALCULATE NEW ADDRESS FOR
$LABEL "JMPADD"

JSAVE IT IN THE PROGRAM

;FIND NUMBER OF BYTES FROM START
3}OF PROGRAM TO LABEL "DISKBF"
;GET START OF PROGRAM ADDRESS
1SAVE IT AGAIN

3 CALCULATE NEW ADDRESS FOR
;LABEL “"DISKBF"

$}SAVE IT IN THE PROGRAM

;GET STARTING ADDRESS OF PROGRAM
;SAVE IT AGAIN

;GET NUMBER OF BYTES FROM START OF
;PROGRAM TO LABEL "TEXT1"
;CALCULATE NEW ADDRESS FOR

;LABEL “TEXT1"

iSAVE IT IN THE PROGRAM

;FIND NUMBER OF BYTES FROM START
jOF PROGRAM TO LABEL “TEXT2"

;GET STARTING ADDRESS OF PROGRAM
;SAVE IT AGAIN

;CALCULATE NEW ADDRESS FOR

3 LABEL “TEXT2"

$SAVE IT IN THE PROGRAM

:FIND NUMBER OF BYTES FROM START

3TO LABEL "CKDRV*

;GET STARTING ADDRESS OF PROGRAM

;SAVE IT AGAIN

;CALCULATE NEW ADDRESS FOR

sLABEL “CKDRV"

$1SAVE IT IN THE PROGRAM

$FIND NUMBER OF BYTES FROM START

$TO LABEL “TEXT3"

;GET START OF PROGRAM

JSAVE IT AGAIN

3JCALCULATE NEW ADDRESS FOR

JLABEL "TEXT3"

3JSAVE IT IN THE PROGRAM

JFIND NUMBER OF BYTES FROM

3START TO LABEL "ALTRET"

3GET START OF PROGRAM

$SAVE IT AGAIN

#CALCULATE NEW ADDRESS POR

tLABEL "ALTRET"

rSAVE IT IN THE PROGRAM

7GET KEYBOARD DRIVER JUMP ADDRESS

IS8AVE IT AT JMPADD

;GET START OF PROGRAM ADDRESS

$SAVE IT AGAIN

;MAKE KEYBOARD DRIVER ADDRESS

;JUMP TO “DIRBASIC"

;GET START OF PROGRAM

:GET STARTING ADDRESS OF

$PROGRAM WHEN IN HIGH MEMORY

;NUIBBR OF BYTES IN PROGRAM

#MOVE IT TO HIGH MEMORY

1 LOAD HL WITH START OF MEMSIZ MESSAGE

PRINT IT ON THE SCREEN

$SET IX TO MEMORY SIZE

3LOAD RAM ARITHMETIC BUFFER

$WITH MEMORY SIZE

JLOAD A WITH TYPE OF OPERAND 2
12=INTEGER, 4~SINGLE, 8=DOUBLE, 3=STRING ¥
1SAVE IT IN TYPE BYTE ;
$CONVERT THE MEMORY SIZE FROM

7 INTEGER FORMAT TO SINGLE PRECISION 7
1FORMAT. THE ROM ROUTINE H
$AT ITOS DOES THIS TASK.

LD THE DEBC REGISTER QUAD WITH

3A SINGLE PRECISION 32768

THE ALTERNATE SOURCE

52a3

5246

52R9
53AC
52aF

52DD

cbocoa
F28252

110000
010091
CD1607

CDBDOF

213041
0606

78

23
CD3A03
10F9
3E0D
CD3A03
C32p40
55

53 45 20
4F 52 59
20 4F 46
03

180C
F200
201p
320943

3203
320843

212p55
1611

01820
01830
01840
01830
01860
01870
01880
01890
01900
01910
01920
01930
01940
01950
01960
01970
01980
01990
02000
02010
02020
02030
02040
02050
02060
02070
02080
41 20
20 53

02090
02100
02110
02120
02130
02140
02150
02160
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280
02290
02300
02310
02320
02330
02340
02350
02360
02370
02380
02350
02400
02410
02420
02430
02440
02450
02460
02470
02480
02490
02500
02510
02520
02530
02540
02550
02560
025870
02580
025%0
02600
02610
02620
02630
02640
02650
02660
02670
02680

Vol. I, No. 6

CALL ENGCP jCOMPARE THE NUMBER IN SINGLE PRECISION
jFORMAT AT ARTHBF TO THE ONE STORED
1IN THE BCDE REGISTER QUAD

Jp P ,8KPADD 1JUMP TO SKPADD IF THE NUMBER
1IN BCDE WAS GREATER THAN THE ONE
$AT ARTHBF

D DE,0 1LOAD THE BCDE REGISTER QUAD WITH

LD BC,91008 165536 IN SINGLE PRECISION FORMAT

CALL SNGADD 1ADD THE SINGLE PRECISION NUMBER
JIN BCDE TO THE ONE AT ARTHBF.

1]
4 SINCE A NUMBER FROM 32768-65535 IS A NEGATIVE NUMBER
i IN INTEGER FORMAT, THE MEMORY SIZE MUST HAVE 65536
b} ADDED TO IT SO IT APPEARS TO BE A NUMBER FROM 32768-65535
1
8KPADD CALL SNGSTR JCONVERT THE SINGLE PRECISION NUMBER
JAT ARTHBF TO A STRING OF ASCII CHARACTERS
LD HL,4130H 3}START OF ASCII STRING OF MEM SIZE
LD B,6 sNUMBER OF CHARACTERS TO PRINT
WRLOOP LD A, (BL) 1GET A CHARACTER

INC HL $POINT TO NEXT CHARACTER

CALL WRCHR JWRITE IT

DJINZ WRLOOP JWRITE ANOTHER IF NOT THROUGH

Lp A,CR ;LOAD A WITH A CARRIAGE RETURN

CALL WRCHR sWRITE IT ON THE SCREEN

Jp DOSJIMP 3 RETURN TO DOS

MEMSIZ DEFM 'USE A MEMORY SIZE OF' ;MEMORY SIZE MESSAGE
4D 45 4D
49 5a 45
DEFB 03 ;TERMINATING BYTE OF DSPMSG ROUTINE
)
!
1 THIS IS THE START OF THE ACTUAL "DIRBASIC" PROGRAM
'
1 THE FIRST PART IS JUST A RELOCATABLE LOADER FOR THIS
H PROGRAM.
1
¥
ETART EQU $ STARTING ADDRESS OF PROGRAM

BXX 1EXCHANGE REGISTERS (HL,DE,BC,HL',DE*,BC')

b A, (3880H) 1GET ROW OF SHIFT KEY

OR A ;COMPARE IT TO ITSELF

JR Z,P001 31IF ZERO THEN JUMP TO P0O1

cp 10H ;18 THE PENCIL CONTROL KEY PRESSED '

JR 2 ,PCNTL 31IF SO JUMP TO PCNTL .

D A, (3840H) 3GET THE UP ARROW KEY ROW

BIT 3,A 1IS THE UP ARROW KEY DEPRESSED?

JR z,P001 3IF NOT JUMP TO POO1

PCNTL LD A, (3810H) $JGET 0-3 KEY ROW

(o 1] jJANY KEYS PRESSED?

JR C,P001 1IF NOT JUMP TO P001

cp }ANYTHING ABOVE THE 3 KEY PRESSED?

JR NC,P001 1IF 50 JUMP TO P001

cp 1 ;IS THE 0 KEY PRESSED?

JR NZ ,NOTDRO $1IF NOT JUMP TO NOTDRO

o (DRVBIT} ,A tLOAD DRVBIT WITH A

XOR A sLOAD A WITH THE DRIVE{#

LD {CURDRV} ,2 $SAVE IT

JR SETUP $JUMP TO SETUP

NOTDRG CP 2 1IS THE 1 KEY PRESSED

JR NZ,NOTDR1 1IF NOT JUMP TO NOTDR1

LD (DRVBIT) ,A 1SET THE DRVBIT

LD A,1 1SELECT DRIVE# 1

LD (CURDRV) ,A tSAVE IT

R SETUP 1JUMP TO SETUP
NOTDR1 CP 4 1IS THE 2 KEY PRESSED

JR - N2,NOTDR2 1IF NOT JUMP TO NOTDR2

Lo (DRVBIT) ,A 1SAVE THE DRVBIT

LD A,2 1SELECT DRIVE# 2

p (CURDRV) ,A J1SAVE IT

JR SETUP 1JUMP TO SETUP

NOTDR2 CP 8 3118 THE 3 KEY PRESSED

JR NZ,P001 $IF NOT JUMP TO P0OO1

pis] (DRVBIT) ,A $1SAVE THE DRVBIT

LD A,3 3SELECT DRIVE§ 3

LD (CURDRV) ,A JSAVE IT

BETUP EQU

b IY,(4020H) $LOAD IY WITH THE CURRENT CURSOR POSITION

LD ’ $LOAD A WITE THE STARTING SECTOR
INUMBER TO READ

ADDO 1 Lo {SECNUHM) ,A $1SAVE IT
LD A,CR $LOAD A WITH A CARRIAGE RETURN
CALL WRCHR JWRITE IT
CK001 CALL CKDRV jCHECK IF THE SELECTED DRIVE IS AVAILABLE
JR CONT1 ;JUMP TO CONT1
POOY JR P002 }JUMP TO P002
CONT1 Lb HL,DISKBF JLOAD HL WITH THE START OF THE
1DISK BUFFER
LD D,11H 1SET D TO TRACK 11H

6/28

THE

S34a
S34cC
534
5351
5352
5355

5357
5359
535¢C

S35E
7

5361

ALTERNATE SOURCE

D5
212455

CD6744
30843
€630
CD3A03
0608
3E20
CD3A03
10FB
1802
185a
212F55
110000
19
0608
1802
1854

CD3A03
10F8
E1l
222141
3E02
32AF40
CDBDOF

3A3341
CD3A03

3A3441
CD3A03
3a3541
CD3A03
211355
CD6744

02690
02700
02710
02720
02730
02740
02750
02760
02770
02780
02790
02800
02810
02820
02830
02840
02850
02860
02870
02880
02890
02900
02910
02820
02930
02940
02950
02960
02970
02980
02990
03000
03010
03020
03030
03040
03050
03060
03070
03080
03090
03100
03110
03120
03130
03140
03150
03160
03170
03180
03190
03200
03210
03220
03230
03240
03250
03260
03270
03280
03290
03300
03310
03320
03330
03340
03350
03360
03370
03380
03390
03400
03410
03420
03430
03440
03450
03460
03470
03480
03490
03500
03510
03520
03530
03540
03550
03560
03570
03580
03590
03600
03610

DADOO1

FRESPC

LBLOO1

LBLOO2

NEXTFR

TOO1

TABOVR

P002
CONT2

WRSPC

Eeem

RDATE

WRSPC2

TX001

LD

LD

J.
LD

)
0
{CURDRV)
A

KRD

.
’
v
’

manbmn

NZ,E001
HL,DISKBF
B,50H

DE, 0
A, (HL)

BYTES TELL WHICH GRANS ARE ALLOCATED AND WHICH AREN'T

FREE GRANS
FREE GRAN
FREE GRAN
FREE GRANS

OFEH
NZ,LBLOO1
DE

OFDH
NZ,LBLO02
DE

OFCH
NZ ,NEXTFR
DE

DE
HL
FRESPC

DE
HL,TEXT2

DSPMSG

A, (CURDRV)
A,30H
WRCHR
B,8

At
WRCHR
TABOVR
CONT2
P003
HL,DISKBF
DE, 0DOH
HL,DE

B,8
WRNAME
E002

Vel. T,

ISET E TO SECTOR 0

jB= LOGICAL RECORD LENGTH

JLOAD A WITH THE CURRENT DRIVE$¢
$PUT IT IN C

JREAD A DISK SECTOR

$1IS THE ERROR CODE 6?2

No.

3 (IT SHOULD BE FOR A DIRECTORY SECTOR)

s IF NOT JUMP TO E001

;LOAD HL WITH THE START OF THE DISK BUFFER

;LOAD B WITH THE NUMBER OF BYTES
;TO COUNT

7SET DE TO ZERO

$GET A FILE ALLOCATION BYTE

;1S IT OFEH

;IF NOT JUMP TO LBL001

;ADD ONE TO FREE SPACE COUNT

3IS IT OFDH

3IF NOT JUMP TO LBLOO2

;ADD ONE TO FREE SPACE COUNT

;IS 1T OFCH?

;IF NOT JUMP TO NEXTFR

;ADD TWO TO THE FREE SPACE COUNT

;POINT TO NEXT GRAN ALLOCATION BYTL
;CHECK ANOTHER ONE IF NOT THROUGH

;SAVE FREE SPACE COUNT
;LOAD HL WITH THE START OF THE
:"DRIVE#" MESSAGE

;DISPLAY IT

$GET THE CURRENT DRIVE#
;MAKE IT ASCIIX

;DISPLAY 1T ON THE SCREEN
}NUMBER OF SPACES TO WRITE
;LOAD A WITH A SPACE
sWRITE IT

WRITE ANOTHER IF NOT DONE
;JUMP TO CONT2

;JUMP TO POC3

;LOAD HL WITH THE START OF THE DISK BUFFER

7SET DE TO POINT TO DRIVE NAME
JPOINT TO IT

JNUMBER OF CHARACTERS TO WRITE
;JUMP TO WRNAME

;JUMP TO E002

WRITE THE DISK NAME ON THE SCREEN

LD

A, (HL)
HL

WRCHR
WRNAME
B,8
At
WRCHR
WRSPC
B,8

jGET A CHARACTER

;POINT TO THE NEXT ONE

jWRITE THE CHARACTER

;WRITE ANOTHER IF NOT DONE
jNUMBER OF CHARACTERS TO WRITE
3LOAD A WITE A SPACE

$WRITE IT

JWRITE ANOTHER IF NOT THROUGH
sNUMBER OF CHARACTERS TO WRITE

WRITE THE DISK DATE ON THE SCREEN

LD
CALL

A, (HL)
HL
WRCHR
WRDATE
B,8
P
WRCHR
WRSPC2

HL
{ARTHBF) ,HL

A,2
(TYPNUM) ,A
SNGSTR

A,(4133H)
WRCHR

7GET A CHARACTER

$POINT TO NEXT CHARACTER
JWRITE IT

;WRITE ANOTHER IF NOT THROUGH
JNUMBER OF CHARACTER TO WRITE
sLOAD A WITH A SPACE

sWRITE IT

;WRITE ANOTHER IF NOT THROUGH
JGET NUMBER OF GRANS FREE

#SAVE IT IN THE ROM ARITHMETIC BUFFER

tLOAD A WITH 2 - INTEGER FORMAT
JSAVE IT

s CONVERT IT TO A STRING OF ASCII
3 CHARACTERS

3GET THE HUNDREDS DIGIT

FWRITE IT

I WRITE OUT THE HUNDREDS DIGIT BECAUSE SOME PEOFLE
MAY HAVE 77 TRACK DRIVES AND/OR PERCOM DATA DOUBLER

SES‘E’S

A, (4134H)

jGET THE TENS DIGIT

JWRITE IT

JGET THE ONES DIGIT

JWRITE IT

$LOAD HL WITH THE START OF TEXT1
3DISPLAY THE MESSAGE

6

THE ALTERNATE SOURCE

53E4
53E6
53E9
53EB
53ED
53F0
53F2
53F4
53F6
53F9
S53Fa
53FC
53FF
5400
5403
5405
5407
540B
540D
540F
5412

3E0D
CD3A03
1802
1850
212F55
1802
1852
1611
3A2ESS
SF
0600
3A0843
4F
CDbDD46
FEO06
203F
DD212F55
1802
18DE
DD7E00
FE20

212F55

24
DDES
D1

03620
03630
03640
03650
03660
03670
03680
03690
03700
03710
03720
03730
03740
03750
03760
03770
03780
03790
03800
03810
03820
03830
03840
03850
03860
03870
03880
03890
03300
03910
03920
03930
03940
03950
03960
03970
03980
03390
04000
04010
04020
04030
04040
04050
04060
04070
04080
04090
04100
04110
04120
04130
04140
04150
04160
04170
04180
04190
04200
04210
04220
04230
04240
04250
04260
04270
04280
04290
04300
04310
04320
04330
04340
04350
04360
04370
04380
04390
04400
04410
04420
04430
04440
04450
04460
04470
04480
04490
04500
04510

P003
SETSEC

E002

ECONT1
ADDO2

DADOC 2

5002
GETONE

WLOOP1

CNTUM

P004
CONT3

E003
ECONT2
WLOOP2

5001
SCONT1

WLOOP3

WLOOP4

WLOOPS

NXTONE

E004

ECONT3

P00S
CONT4

LD A,CR
CALL WRCHR

JR SETSEC

JR PO04

LD HL,DISKBF
JR ECONT1

JR E003

LD D, 111

LD A, (SECNUM)
LD E,A

LD B,0

LD A, (CURDRV)
LD C,A

CALL DSKRD

cp 6

JR NZ,E003
LD 1X,DISKBF
JR GETONE

JR SETSEC

LD A, (IX+0)
cp 200

Vol. I, No. 6

;LOAD A WITH A CARRIAGE RETURN

JWRITE IT

;JUMP TO SETSEC

;JUMP TO PO04

;LOAD HL WITH THE START OF THE DISK BUFFER
;JUMP TO ECONT1

;JUMP TO EO003

;SET D TO TRACK 11H

;GET THE SECTOR#

sPUT IT IN E

; LRL=256

;GET DRIVE#

$PUT IT IN C

;READ A SECTOR

;1S THE ERROR CODE 62

;IF NOT JUMP TO E003 (ERROR HAS OCCURRED
;LOAD IX WITH THE START OF THE DISK BUFFEl
;JUMF TO GETONL

7 JUMP TO SETSEC

:GET A FILE'S STATUS

;HOW DOES IT COMPARE TC 20H

THIS PROGRAM NORMALLY DISPLAYS LIKE A "DIR (I)".

TO MAKE IT DISPLAY LIKL

TO MAKE IT DISPLAY LIKE

JR NC, NXTONE
cp 10H

JR C,NXTONE
PUSH IX

POP HL

LD DE,5
ADD HL,DE
PUSH HL

LD B,8

LD a, (HL)
cp 20H

JR 2, CNTUM
CALL WRCHR
INC HL
DINZ WLOOP 1
LD c,B
POP HL
PUSH HL

LD DE, 8
ADD HL,DE
LD A, (HL)
cp OH

JR 2 ,WLOOP 3
JR CONT3
JR P00S
LD At/
CALL WRCHR
JR ECONT2
JR E004
LD B,3

LD A, (HL)
JR SCONT1
JR 5002
CALL WRCHR
INC HL
DINZ WLOOP2
LD A,C
JR WLOOP4
LD A,C
ADD a,4
ADD A4

LD B,A
LD A, L

POP HL
PUSH Ix
POP BL

JR ECONT3
JR ERROR
LD DE, 20H
ADD HL,DE
PUSH HL
poP IX

JR CONT4
JR RETURN
Lo HL,DISKBF
INC H

PUSH X

POP DE

6/30

"DIR" CHANGE THE 20H TO 1BH.

"DIR (I,S)"™ CHANGE THE 20H TO 7FH.

;IF GREATER THAN 20H THEN JUMP TO NXTONE
;HOW DOES IT COMPARE TC 10H?

;IF LESS THAN 10H JUMP TO NXTONE
;SAVE IX

;PUT IT IN HL

;SET DE TO POINT TO FILE NAME
;}SET HL TO START OF FILE NAME
;SAVE IT

;MAX NUMBER OF CHARACTERS TO WRITE
;GET A CHARACTER

;IS IT A SPACE?

;IF SO JUMP TO CNTUM

sURITE IT

;POINT TO NEXT CHARACTER

;CHECK ANOTHER CHARACTER IF NOT THROUGH
;sHUMBER OF SPACES TO PAD FILE NAME
;RESTORE FILE NAME START

JSAVE IT AGAIN

;SET DE TO POINT TO FILE EXTENSION
;HL POINTS TO FILE NAME EXTENT
iGET A CHARACTER

;1S IT A SPACE?

;IF 50 JUMP TO WLOOP3

;IF NOT JUMP TO CONT3

;JUMP TO POOS

;LOAD A WITH A "/"

iWRITE IT

;JUMP TO ECONT2

;JUMP TO E004

sMAX NUMBER OF CHARACTER TO WRITE
JGET A CHARACTER

;JUMP TO SCONT1

;JUMP TO 5002

jWRITE THE CHARACTER

;POINT TO NEXT CHARACTER

;CHECK ANOTHER IF NOT THROUGH
;COPY PAD SPACES TO A

;JUMP TO WLOOP4

+ADD TO NUMBER OF SPACES TO WRITE
iSUM IT

;ADD AN AUTOMATIC PAD OF 4 SPACES
iSUM IT

;LOAD A WITH A SPACE

WRITE A SPACE

;WRITE ANOTHER IF NOT THROUGH
;RESTORE FILE NAME POINTER

iSAVE FILE'S STATUS BYTE

sPUT IT IN HL

;JUMP TO ECONT3

;JUMP TO ERROR

;LOAD DE TO POINT TO NEXT FILE ENTRY
jADD IT TO HL

;SAVE NEW FILE POINTER

;COPY IT TO IX

3JUMP TO CONT4

;JUMP TO RETURN

;LOAD HL WITH THE START OF THE
;DISK BUFFER

;POINT TO 256 BYTES PAST BUFFER
sSAVE NEW FILE STATUS POINTER
;COPY IT TO DE

THE ALTERNATE SOURCE Vol. I, No. 6

S47F AF 04520 XOR A ;CLEAR THE CARRY FLAG

5480 ED52 04530 8BC HL,DE 1SUBTRACT DE FROM HL

5402 2003 04540 JR NZ,GETONE IF RESULT NOT EQUAL TO Z2ERO
04550 JTHEN THIS DIRECTORY SECTOR
04560 3118 NOT USED UP YET.

5484 3A2ESS 04570 ADDO3 LD A, (SECNUM) 1GET CURRENT SECTOR$

5487 3C 04580 INC A }POINT TO NEXT SECTOR#

5488 322E55 04590 ADDO4 Lp (SECNUM) ,A $SAVE IT AGAIN

5488 FEOA 04600 cp OaH JHOW DOES IT COMPARE TO OAH?

548D 38BE 04610 JR c,8001 JIF LESS THAN OAH JUMP TO S001

548F 3EOD 04620 ALTRET LD A,CR ;LOAD A WITH A CARRIAGE RETURN

5491 CD3A03 04630 CALL WRCHR IWRITE IT

5494 CD3Aa03 04640 CALL WRCHR JWRITE IT AGAIN

5497 2a2040 04650 LD HL, (4020H) 1 LOAD HL WITH THE CURRENT CURSOR POSITION

S549A 3620 04660 p (HL) ,20H }PUT A SPACE THERE

549C FDE5 04670 PUSH 1Y }SAVE CURSOR POSTION BEFORE "DIRBASIC"
04680 ;ETARTED OPERATION

549 D1 04690 POP DE jCOPY IT TO DE

549F 7B 04700 Lp AE JLOAD A WITH E (BITS 0~5 OF E
04710 JCONTAINS THE HORIZONTAL POSITION
04720 3OF THE CURSOR) .

S54A0 E63F 04730 AND 3Fn ; ISOLATE THE HORIZONTAL POSITION

54a2 57 04740 LD D,A $SAVE IT IN D

54a3 7D 04750 b AL ;LOAD A WITH THE OLD HORIZONTAL POSITION

S54A4 EGCO 04760 AND 0COH sMARE THE HORIZONTAL POSITION ZERO

5426 82 04770 ADD a,b 7CALCULATE THE NEW CURSOR POSITION
04780 7 (HORIZONTAL)

54A7 6F 04790 LD L,A JSAVE IT IN L

54A8 2B 04800 DEC HL ;BACK UP CURSOR ONE POSITION

54A9 222040 04810 LD (4020H) ,HL 7SAVE NEW CURSOR POSITION

54AC 3E20 04820 LD A,20H JLOAD A WITH A SPACE

S4AE CD3A03 04830 CALL WRCHR $WRITE IT

54B1 3E18 04840 LD A,18H 3LOAD A WITH A SHIFTED BACKSPACE

54B3 B7 04850 OR A ;SET THE FLAGS

54B4 C9 04860 RET JRETURN TO THE CALLING PROGRAM

54B5 D9 04870 RETURN EXX 1EXCHANGE REGISTERS BACK

54B6 ES 04880 PUSH HL $SAVE HL

54B7 2A2C55 04890 JUMPOT LD HL, (JMPADD) ;LOAD HL WITH THE RETURN ADDRESS

54BA E3 04900 EX (SP) ,HL $EXCHANGE THEM

54BB C9 04910 RET ;JUMP TO THE KEYBOARD ROUTINE
04920 ;
04930 ; SUPPORT ROUTINES
04940 ;

54BC F6CO 04950 ERROR OR 0COH ;DISPLAY A DOS ERROR MESSAGE

54BE F5 04960 PUSH AF 1SAVE AF

54BF 3EOD 04970 LD A,CR ;LOAD A WITH R CARRIAGE RETURN

54C1 CD3A03 04980 CALL WRCHR JWRITE IT

54C4 P1 04920 POP AF $RESTORE AF

54C5 CD0944 05000 CALL DSKERR twISPLAY THE DISK ERROR

54C8 C33040 05010 JP DOSERR 3RETURN TO DOS - ERROR HAS OCCURED
05020
05030 CKDRV ~ THIS ROUTINE CHECKS TO SEE IF THE DRIVE SELECTED
05040 IN THE 4309H DRIVE SELECT BIT BYTE IS AVAILABLE
05050 ;

54CB 3EDO 05060 CKDRV LD A,0D0H JLOAD A WITH DISK CONTROLLER RESET BYTE

54CD 32EC37 05070 LD {37ECH) ,A 1STORE IT

54D0 010010 05080 LD BC, 10008 J1GET A LOOP NUMBER

54D3 30943 05090 CKLPO1 LD A, (DRVBIT) $GET THE DRIVE SELECT BYTE

54D6 32E137 05100 Lb (37E1H) ,A JSTART THE DISK MOTOR AND SELECT
a5110 $THE DRIVE

54D9 0B 05120 DEC BC 3} DECREMENT THE STALL COUNTER

54DA 78 05130 p AB $ARE BOTH B AND C EQUAL TO ZERO?

5408 B1 05140 OR c 3 (BC=0?)

54DC 2075 05150 JR NZ,CKLPO1 3IF NOT JUMP BACK AGAIN

S4DE 3AEC37 05160 4] A, (37ECH) 1GET INDEX PULSE BIT FROM
05170 sFROM THE DISK CONTROLLER STATUS
05180 }REGISTER

S4E1 E602 05190 AND 2

54E3 57 05200 LD D,A JSAVE IPB IN D REGISTER

54E4 010010 05210 b BC,1000H JSET LOOP COUNTER AGAIN

54E7 3A0943 05220 CKLPO2 LD A, (DRVBIT) $GET DRIVE SELECT BIT

54EA 32E137 05230 LD (37E1H) ,A 1SELECT THE DRIVE

54ED 3ARC3I7 05240 LD A, (372cH) $}GET THE IPB

5400 E602 05250 AND 2

542 BA 05260 cP D $HAS IT CHANGED?

54r3 CO 05270 RET NZ 3IF SO RETURN TO CALLING INSTRUCTION

5474 0B 03280 beC BC 31IF NOT DECREMENT THE COUNTER £

54¥5 78 052%0 o A,B JAND KEEP SELECTING THE DRIVE ¥

5496 B1 05300 OR [

54F7 20ER 05310 JR NEZ,CKLPO2

5479 210355 05320 CKERR LD BL,TEXT3 JLOAD HL WITH START OF MESSAGE

54PC CDE744 05330 CALL DEPMBG 1DISPLAY IT

s4rr 21 05340 POP BL $GET RETURN ADDRESS FROM CALL

5500 c38rs5¢ 05350 CK002 Je ALTRET 3JUMP TO ALTRET

5303 44 05360 TB: DEFM *DRIVE NOT READY' IMESSAGE TEXT

AT3
52 49 56 45 20 4B 4F 54
20 52 45 41 44 59
5512 03 05370 DEFB 038
5513 20 05380 TEXT1 DEPM ' GRANS FREE tMESSAGE TEXT
47 52 41 6B 53 30 46 52
~6/31

THE ALTERNATE SOURCE Vol. I, No. 6

45 45 20 20 20 20 20
5390

5523 03 DEFB 03 ;TERMINATING BYTE
5524 44 05400 TEXT2 DEFM *DRIVE# ' ;MESSAGE TEXT
52 49 56 45 23 20

5528 03 05410 DEFB 03 STERMINATING BYTE

552C 0000 05420 JMPADD DEFW 0 ;RETURN ADDRESS TO THE KEYBOARD
05430 ;ROUTINE BEING USED JUST BEFORE
05440 ;"DIRBASIC® WAS LOADED

552E 00 05450 SECNUM DEFB 0 ; CURRENT SECTOR#

0100 05460 DISKBF DEFS 100H ;256 BYTE DISK BUFFER

562F 05470 ENDADD EQU $;ENDING ADDRESS OF THE PROGRAM
05480 END BEGIN ;STARTING ADDRESS OF THE PROGRAM IS BEGIN

200
00000 TOTAL ERRORS

BS6E RES S0 SONNUNONCNNSSONS

WITH DISK FEATURES SIMILAR TO EDTASM-PLUS:

An editor and assembler
for the Model | and lil

1. A symbol table buffer area of over thirty thousand bytes, with text buffer
area equal to your drive capacity.

2. ”"LOAD” and "WRITE” text buffers from/to disk, as well as assembled
object code.

Block move features for rearranging text lines.

Ability to locate designated strings within text.

Global replace throughout user designated range of lines.

Execute DOS commands without leaving EDAS.

The editor maintains command syntax identical to Basic editor, and adds
line insert, line replace and line renumbering abilities. @
8. ”ASSEMBLE” with numerous switches to allow direct assemble to
memory. Debug before leaving EDAS.

9. ”BRANCH” allows you to execute your program that has been assembled
to RAM, then return to EDAS.

10. ”USAGE” will give you the number of free text buffer bytes, the number
of bytes used, and the address of the first free byte.

11. ”Hardcopy” to print all or part of text; “Type” to print without line
numbers.

12. Functional CLEAR key; scroll text with ARROWS, upper and lower case.

Nk w

THE ALTERNATE SOURCE
1806 ADA STREET
LANSING, MICHIGAN 48910

ADDRESS
City

THE ALTERNATE SOURCE Vol. I, No. 6

MAKING YOUR MACHINE LANGUAGE PROGRAMS RELOCATABLE
By Jack Decker

How would you 1like to be able to create machine
language programs that don't require you to pre-set the
MEMORY SIZE, don't wipe out other machine language programs
that are already in high memory, and automatically locate
themselves in the highest available memory? Not only is all
of this possible, it isn't terribly difficult to do, if you
will follow the steps outlined below.

Step one: Write the program in the normal way, with two
exceptions. The first exception is that the first three
lines of your assembly language program should be these:

ORG nnnn
OFFSET EQU 0
START (first instruction of your program)

(There is an exception to the exception: If your program has
an initialization segment, for example a piece of code to
patch the program into the USR function, it should be
inserted immediately following the ORG statement. The
reason is that you will have to delete it later. You will
be writing a new initialization segment during step three,
but you stil]l may want to write a temporary one now for
testing and debugging purposes).

The other exception is that whenever you make an
absolute reference to another portion of your program (with
a JP or CALL instruction, for example), use a label with
~OFFSET added. For example, suppose you wanted to CALL a
subroutine in your program named KEYTST. You must write the
instruction like this:

CALL KEYTST-OFFSET

Note that at this stage of the game, subtracting the
OFFSET will not make any difference in the assembled
instruction, because OFFSET is set equal to zero at the
beginning of the program. You must write all instructions
that reference other locations in your program in this
manner, if the instruction assembles to a two-byte absolute
address. You must NOT write relative jump instructions (JR
or DJINZ) in this manner. And you must NOT write
instructions that reference locations outside the program
(calls to ROM, etc.) in this manner. Only instructions that
directly reference an address within your program must be
written this way.

To save yourself some effort later, you should write

6/33

THE ALTERNATE SOURCE Vol. I, No. 6

your program to use relative jump (JR) instructions whenever
possible, and in any event your program must not be
position- dependant (in other words, you should be able to
change the ORG address without running into problems).

Write your program, test it, debug it, and make the
changes and improvements you feel are needed.

When your program runs perfectly, you are ready to make
it relocatable. To begin step two, change the ORG address
of your program to one - that's right, numero uno - and
assemble it. Either use the SHIFT-@ key to stop the
assembled listing every few lines, or, if you are fortunate
enough to have a printer, dump the assembled 1listing to
hardcopy. What you are looking for is any instruction that
references an address within your program. These
instructions should be easy to spot because they should all
have the -~OFFSET suffix. Because we have assembled the
program starting at address 1, the address field of the
assembly listing will show us the number of bytes from the
start of the program to each label. Confused? Here's an
example. Suppose the beginning of our assembler listing
looks like this:

0001 100 ORG 0001H

0001 110 OFFSET EQU 0

0001 3C 120 START INC A

0002 CAnnnn 130 JP Z ,ELSWHR-OFFSET

Note that the address 0002 is at the beginning of the 1line
containing a JP instruction to elsewhere in the program.
You want to make a note of this address (02H in this case)
for this and any other lines containing the -OFFSET suffix,
because you will need it later.

Why are we doing this? Well, go back to the example
above, and count the byte displacement from the label START
to the address field indicated by the label ELSWHR~OFFSET.
The INC A instruction has zero displacement (it is located
at the address indicated by START). The JP instruction is
located one byte away, and the address for the JP
instruction - which will have to be changed when the program
is relocated - is two bytes away from START. And our
address field says 0002! Well, why NOT let the computer do
our counting for us?

Note that this method is accurate when there is an
instruction in front of the address field. If you happen to
have a table of addresses within the program (using the DEFW
instruction, for example), you could change the ORG to zero
to get the correct byte count for those addresses.

6/34

THE ALTERNATE SOURCE Vol. I, No. 6

But before you change the ORG address, we need one more
bit of information while it is still set to one. We need to
know the total number of bytes in the progiam, ané the
easiest way to get this information is to check the address
field at the beginning of the last instruction in the
program. ben't forget to allow for a multi-byte
instruction. For example, if the last line of our program
(ignoring the END statement) is

0136 c9 990 RET

your program is 136H bytes long. But suppose it is
0136 Cc3Ccco6 990 JP 6CCH

in that case, your program is 138H bytes long.

At this point you should have a list of
byte-displacements for all addresses that will have to be
changed when the program is relocated, and the length of the
program (in hexadecimal).

Now we come to step three - this is the good part.
First, delete the ORG address line in your program (as well
as any temporary initialization lines that may have followed
it). Then change the next line so that it reads:

OFFSET EQU $
The first two lines of your program should now be:

OFFSET EQU $
START (first instruction of your program)

Next, using the EDITOR-ASSEMBLER "N" command, make a lot of
room at the beginning of your program. I suggest typing
N5000,10 to get everything well out of the way.

We are now going to add some code to the start of your
program. These instructions will only be used to relocate
your program - they are not saved for later use, sO we
needn't be too concerned with making the code as short as
possible (but we won't make it overly sloppy, either).

The first added code will be the following lines, which
should be placed at the very start of your program:

ORG 5800H

INTLZE LD A,0C9H ;Plug DOS vector with
LD (41BBH) ,A : a RET instruction
LD HL, (40B1H) ;Get old MEMORY SIZE

LD DE, program length obtained during step two

6/35

THE ALTERNATE SOURCL Vol. I, No. 6

XOR A ;Clear carry flag

SBC HL ,DE ;HL=new MEMORY SIZE

LD (40B1H) ,HL ;Put back new MEM SIZC
LD DE, 32H ; "CLEAR 50"

CALL 1E83H ;& reset other pointers

LD BC, program length obtained during step 2
LD DE, START-1+ program length from step 2

LD HL, (40B1H) ;Get new prgrm location
ADD HL,BC ;HL=New program end

EX DE,HL ;HL=present, DE=new end
LDDR ;Move the program

INC DE ;DE=Actual start of

H program address

The above code will protect memory for the program and
move it (don't forget to put the H after the program length
in the two locations that call for it, unless you have
converted it to decimal since step two). If you have
managed to make your program completely relocatable (it has
NO absolute jumps, calls, etc.) you can skip the next
instructions, and also omit the REPLCE subroutine from your
program. Otherwise, take your list of address displacements
(from step two), and insert the following code for each one:

LD HL, address offset (don't forget the "H")
CALL REPLCE

Going back to our example in step 2, for that program
we would have to insert the following:

LD HL,02H
CALL REPLCE

Repeat this code for each displacement on the list,
inserting the displacements after the LD HL, instruction.
Hopefully you won't have very many addresses to change, but
if you do you may want to try and write a table lookup
routine or some such thing. If you do, bear in mind that
the contents of the DE registers must be saved, and be
careful not to locate the table beyond the instruction
labeled OFFSET (this is the start of your program).

Once you have inserted the relocator routine and the 1D
HL,nnnn/CALL REPLCE sequence as many times as is necessary,
you can do whatever initialization your program requires.
DE contains the address of the first instruction of your
relocated program (the instruction labelled START). If the
entry point to your program is elsewhere, you'll have to
count the offset from START first. You could then use the
sequence

6/36

THE ALTERNATE SOURCE Vol. I, No. 6

LD HL,entry point offset
ADD HL,DE

to get the entry point into the HL registers. For now,
let's assume that the entry point is the same as the START
address, which is stored in the DE registers. If your
program is to be called by the Level II USR function, you
would insert the following instruction:

LD (16526D) ,DE

Another method of access to your program might be
through an unused Disk BASIC command. For example, to patch
into the "NAME®" command (so that you could call your program
by "NAME" or using NAME in a BASIC program), you could use
this instruction sequence:

LD HL,4 18EH ;NAME command vector
LD (HL) ,0C3H ;JP instruction

INC HL

LD (HL) ,E ;1LSB of START address
INC HL

LD (HL) ,D :MSB of START address

Now we come to the end of our relocator program (except
for the REPLCE subroutine). Terminate the routine according
to what you want to have happen when initialization is
completed. If you want to go back to BASIC (the "READY"
prompt), do it like this:

JP 6CCH

on the other hand, if you want to jump right into your
relocated machine language program, you can do this:

EX DE,HL ;Get start address in HL
JP (HL)

Finally, we need the REPLCE subroutine (unless, of course,
there were't any absolute jumps, calls, etc. in the
program) . The REPLCE subroutine looks like this:

REPLCE ADD HL,DE :Get address of label
LD C, (HL) :Get byte displacement
INC HL ; from program and
LD B, (HL) ; put in BC
DEC HL ;HL=address of label
PUSH DE ;Save new START address
EX DE,HL ;HL=new START address
ADD HL,BC ;HL=new address for label
EX DE,HL ; now put in DE
LD (HL) ,E :New address calculated-

6/37

THE ALTERNATE SOURCE Vol. I, No. 6

INC HL ; now write it into
LD (HL) ,D ; label (address field)
POP DE ;Restore new START
; address
RET ;Back to main routine

Immediately following the REPLCE subroutine, your main
program should begin. 1If ycu have followed directions this
far, the first two instructions of your main program will be
labeled OFFSET and START. Drop down to the end of your
program, and change the END statement to READ

END INTLZE
Your relocatable program is now complete.

When your program is first loaded into the computer
under the SYSTEM command, it occupies memory starting at
5800H. This address was chosen to allow room for the DOS if
you have a disk system, and yet be 1low enough to allow
several programs to be loaded into high memory. If this
isn't suitable for your application, change the ORG address.

You will find that your programs will be much easier to
use when they are relocatable (just remember not to reserve
any memory before loading, since the program will avoid
already-protected memory like the plague). Also, if you
have any thoughts about marketing your programs, you may
find that they will be easier to sell since one program will
fit any memory size (and distributors will like them better
since they won't have to stock three or four versions of the
same program). If you learn how to use the routines in this
article, your programs can be the ones that are "smarter
than the average.”

BOOKS?? WE'VE GOT 'EM!! Qi%

780 SOFTWARE GOURMET GUIDE "0(

DISK & OTHER MYSTERIES

Bag;,
asic © « Compyyy,
B R PRocg,,
PATHWAYS THROUGH THE ROM MS Fog

INQUIRE AT THE ALTERNATE SOURCE

6/38

SMOO0HANVH AITdWISSVSIA

THE ALTERNATE SOURCE vol. I, No. 6

From The Source's Mouth

By Joni M. Kosloski

The number of programs available for the TRS-80 today
is staggering. And while most cities can boast at least one
local software source, that source or those sources probably
provide you with only a small glimpse of all that's
available. The problem, of course, is that no store can
afford to stock the wide variety of software now available
for your perusal. And your perusal is important; otherwise,
how are you to know which word processor is best for you?
Or which DOS? Or which data base manager?

Little needs to be said about the local stores that
provide a preview service -- their importance in helping the
consumer decide is unquestionable. But even so, there are
problems with timing, having the right inventory to solve
your needs, and the trained personnel to demonstrate the
effectiveness of any given program.

At TAS, about 90 to 95% of our sales are through the
mail; programs and products purchased sight unseen. And I
don't think I have to tell you that's not always the best
way to buy. Sometimes you expect more of the program. Or
don't realize that it won't work with your operating system.
For whatever reason, there are times when almost EVERYONE
will be unhappy with a software purchase.

The problem isn't always the program either. There are
programs that I love that some people wouldn't even look at
twice -- and visa versa. So what do you (and I) do?

At TAS we have had an implied policy that software can
be returned if the user (that's us!) finds it unacceptable.
The intention of our column this month is to make that
policy explicit. Unfortunately we gimply don't have the
personnel to adaquately judge all software from respective
viewpoints; by formally adopting a return policy the
pressure will be on us to look cautiously at a program that
has had several returns. In this era of the entrapeauner,
ripoffs (both intentional and unintentional) are too
frequently overlooked. We are definitely not the first
company to offer a money-back guarantee on software, but we
applaud the efforts of those who have taken the initial
steps to promote this activity.

We do ask that you begin testing a package immediately
and inform us of your intentions within 30 days.

May the Source be with youl!

6/39

ALPHA BYTE STORAGE

18 wheelin’ and dealin’!

Printers?

We stock 15 different kinds of dot matrix
printers. We stock the 3 best letter quality
printers — Dec, Qume and Diablo. Check our
prices before you make your final decision!

Supplies?

We'll supply you with computer paper, print
wheels, labels, forms, print thimbles, and much
more!

Diskettes?

We're never undersold! Dig up the best price
you can find on 5Y” Verbatims — then give us
a call!

Software? Books? Miscellaneous?

We'd like the opportunity to chat with you
about your current needs. And we’ll help you find
the best deal we can. Give us a call with your
interests, or write for a free catalog!

0 Hipha
4636 Park Granada
@ BU‘B Calabasas, CA 91302
Sioisge 1-213-883-859),

6/40

THE ALTERNATE SOURCE Vol. I, Nc. 6

khkkkkhkhhkhhhrdkhkhkhhhkrhhdhhhddx

*# Bit Kickin' With Jesse Bob *
hhkhkhkhkhkrhkhkhkhhdhkhkh kA Rhkkkkhhdhhkk

Copyright (c) 1980*
Dear Readers,

Well, here I am, back from making my first movie,
‘Urban Bitboy'. It was a lot of work, but I really had a
good time doing it. I know that I said I'd run my picture
in this issue, but I had so many publicity photos taken that
I sprained my grin. Next issue for sure, I promise.

Recently a letter was received containing the
disparaging suggestion that Jesse Bob Overholt is a mythical
person concocted by Joni and Charley. Boy Howdy, that's the
dang-foolest statement I've ever laid eyes on! Why, Joni
thinks Willy Nelson is one of Ozzie and Harriet's kids and
Charley says that dieing with your boots on is what happens
vhen you push RESET with no disk in drive zero! To set the
record straight, let me say here and now that Jesse Bob
oOoverholt does exist and the following is a 1list of people
that he positively ain't:

Charley Butler
Joni Kosloski
Randy Cook
J.R. Ewing
Wayne Green

Dear Jesse Bob,

I've been writing more and more machine language
software lately. While I try to write programs which are
position dependent, I find it very difficult to perform the
address relocation without knowing "where I am” in the code.
Is there some way for a machine language program to find out
where it is?

Perplexed in Paw Paw
Dear Perplexed,

Some processors have the ability to address memory
using offsets to the current value in the program counter
register (called program-counter-relative addressing). It
is unfortunate that the 2-80 does not have this form of

addressing, but it is still possible for a machine language
program to find out for itself "Where am I2?".

6/41

*Copyrighted by the Circle J Software Ranch

THE ALTERNATE SOURCE Vel. I, No. 6

The way to do this is by accessing the Program Counter
register. No hardware instruction exists to perform this
directly. It is possible, however, to get it indirectly
using the stack. The Program Counter is placed on the stack
by the CALL instructions, the RST instructions, and by
interrupt processing. Once the Program Counter is on the
stack, it can easily be transferred to another register
using POP. A routine exists in the Level II ROM at address
000BH for this express purpose. It is wused by issuing a
CALL to OBH. The routine will return with the HL register
pair containing the address of the instruction following the
CALL. In the following program, when the program gets to
HERE the HL register pair will contain the address of HERE.

CALL OBH ;Where am I?
HERE EQU $ '

Another easy way of finding out "where I am" is built
into the Level II USR calling sequence. BASIC does not
actually CALL your USR function. Instead it loads the BC
register pair with the address of your routine, PUSHes it on
the stack, and RETurns to your subroutine, When your
program receives control the address at which it was entered
will be contained in the BC register pair, A word of
caution, however. This is not the case if the USR function
was called using a string parameter. 1In that event, the
string handling necessary for parameter passing destroys the
BC registers before passing control to you.

Jesse Bob

Dear Jesse Bob,

How the heck do you do a CMD"T" in an assembly language
program? I wrote me a super little cassette utility, but if
I forget to turn off the clock before I use it, the blasted
thing hangs up and I have to reboot.

Troubled in Tuscon
Dear Troubled,
Stay cool, your troubles are over. Add the following

code to your utility and you can do a CMD"T" whenever you
-want.

CMDT LD A,0C9H ;A=RET COMMAND
JR CMDX ;GO PROCESS IT

CMDR LD A,0C3H ;A=JP COMMAND

CMDX LD (4012H) ,a ;PATCH INT VECTOR

6/42

THE ALTERNATE SOURCE Vol. I, No. 6

EI ;ALLOVW INTERRUPTS
RET ;EXIT SUBROUTINE

All you have to do is CALL CMDT to turn off the clock and
CALL CMDR to restart it. What CMDT does is to patch the JP
instruction which receives control on interrupt to a RET.
This causes the interrupted program to resume and leaves the
interrupt enable flags set to disable future interrupts.
The CMDR routine restores the JP instruction so that
interrupts may be processed normally.

Incidentally, one thing many people don't know about
the "heartbeat" interrupt in DOS is that it takes nearly one
full millisecond (one thousandth of a second) to process
each interrupt. Interrupts occur once every twenty-five
milliseconds. That means that four percent of the total
available processing time is spent handling the interrupts.
In very long programs, this can add up. So if you don't
need the clock, doing a CMD"T" may save you a little time.

Jesse Bob

Dear Jesse Bob,

Okay, here's my six bucks. Now tell me what the HALT
instruction does in Z80 code.

Wondering in Waco
Dear Wondering,

I'm returning your money -- this one's on me. The HALT
instruction does just that. It stops the Z80 processor So
that something else can use the system bus. Another use
would be to synchronize the 280 with an external event,
since once the processor is halted it doesn't start up again
unless triggered by an interrupt. That is how the HALT
instruction works normally. That is NOT how it works in the
TRS-80.

One of the things that HALT does is send out a signal
that tells the external devices it is halted and they may
use the bus. The sneaky devils in Fort Worth tied this line
to the non-maskable interrupt pin of the processor. This,
in effect, makes the HALT instruction a kind of software
RESET, since the effect will be the same as if the RESET
button were pushed. That's why sometimes when a machine
language program "gets lost" and gallops through memory the
system reboots. The runaway program found a HALT.

Jesse Bob

6/43

’ S —— 5 W

|
save 50 °/o| AND

GET MICRO CONNECTED Plugs directly between
ALL S80'S (Level 1,4K to MOD 11,64K) and the telephone net-
work. To compliment the DIRECT CONNECT MODEM, a
seperate RS-232 jack ALSO operates your serial printer on OR
off line. With THE MICRO CONNECTION™™ you have accurate 300
baud two-way and simplex communications between you and
the computer data base of your choice. In ADDITION, you have
radio communications and extensive software options and
packages. NO NEED for the expansion interface, acoustical
coupling modem, RS-232 board or cableing. That is why THE
MICRO CONNECTIONM ISAMODEM

df AND MUCH MORE. . .!

Ask for our modem
fact sheet. . ..
COMPARE. .
and.

Then get your MICRO CONNECTION™ for only $249901
the microperipheral corporation
@ PO Box 529. Mercer /s/and. WA 98040 SRR
| (&%

VISA

—)

206 454 3303

=

6/44

THE ALTERNATE SOURCE Vel. I, Ne. 6

Round 2: VTOS 4.0

The competition heats up.

The last issue of TAS (BAug., 1980) featured my review
of NEWDOS-80 in which I expressed considerable enthusiam
about its new features and capabilities. I am also
enthusiastic about VIOS 4.0 (VTOS = Virtual Technology,
Inc.), but my enthusiasm is a bit dampened, as it was with
the original VTOS 3.0, by the somewhat inadequate
documentation. The documentation consists of a skimpy 5 X 7
manual with 42 pages, plus 2 errata sheets. For an advanced
and complex DOS with many unique and new features, this
little green manual just doesn't do the job. Admittedly,
most --but not all-- of the necessary operational guidance
is crammed into this guidebook. Nevertheless, I had to
spend many hours experimenting with various commands to
figure out what the guidebook was trying to tell me.

A complaint often shared among college students
concerns the professor who is so educated that he has
difficulty communicating with his students at their own
level. Perhaps this is what we are up against with Mr.
Randy Cook, the VIOS author. He is obviously an extremely
competent programmer, but he is weak in communicating the
application of his DOS software to those of us who are less
experienced.

I hasten to add, however, that Mr. Cook promises a
comprehensive "Master Reference Manual," possibly sometime
in November (optional at about $30). I urge the purchase of
this manual, even for experienced users. I have not seen
the expanded manual, but hopefully it will be more
illuminating than the little green reference manual.

So much for my bickering. Now, what does the much
heralded VTOS 4.0 system do? Briefly, the most significant
capabilities can be summarized as follows:

1. VTOS is "device independent," meaning that data can be
routed very easily between devices. Devices are defined as
keyboard, display, printer, job log, and more. Additional
devices can be defined by the user. A communications line
(*CL) is one example.

2. It employs a unique method of CHAINing, which can be
described as a third mode of programming (DOS would be the
first mode and BASIC the second).

3. It can be configured to handle virtually any combination
of disk systems, from thirty-five track, single density, to

6/45

THE ALTERNATE SOURCE Vol. I, No. 6

80 track, double sided, double density. It can also handle
hard disk drives for those of you who need massive amounts
of data storage.

4, It can be configured to handle a variety of different
computer systems and user preferences. For example, lower
case, blinking cursor, etc.

5. A number of new utility features are added, some of
vwhich are carried forward from the original VTOS 3.0.

Now for some details.

COPY PROTECTION

The original VIOS 3.0 used a "master” disk with a "bad"
sector (four) which prevented making DOS copies by
traditional means (e.gq., TRSDOS, NEWDOS, or SUPERZAP). An
operational "system" disk was made from the "master" disk,
and it too had a "bad" sector four. This was Mr. Cook's way
of preventing the pirating of his software: the system disk
would not back itself up and additional system disks could
only be created by the owner's master disk.

Conflicting rumors preceded the release of VIOSs 4.0:
did it, or did it not, have the a sector as a form of copy
protection? The answer straight from the shoulder is, ‘"yes
and no."® VIOS 4.0 still has a bad sector four (it is
actually numbered as sector '7C') which prevents making
backups by normal means. Only a VIOS 4.0 disk can create
another VIOS 4.0 disk. But this time there is a difference
from the original VTosS 3.0. Any number of duplicate disks
can be created with the original disk, and additional copies
can be created with these second generation copies. In
other words, if I chose to give someone a copied VTOS 4.0
disk (which of course I won't), that individual would still
have the capability to make additional copies to give to a
someone else, and so on.

I can't understand the reason for this unusual disk
formatting because it serves only to pain my backside. It
certainly does not prevent unauthorized copying or pirating.
My “"yes and no" answer above should now be clear: yes, the
"bad* sector four is still there, but no, it does not
prevent making backups. Is it merely an unnecessary
irritant?

DEVICE INDEPENDENCE

The concept of device independence was introduced to

6/46

THE ALTERNATE SOURCE vol. I, No. 6

TRS-80 owners in the original VTOS 3.0, sc it is not new to
VTOS 4.0. VTOS 3.0 owners are no doubt aware of the power
and usefullness of this unique feature, but for the benefit
of newcomers to the VIOS system, here is an example of how
it can be used. The command: <RQUTL *PR TO *DO>

will direct any progran data intended for the printer (*PR)
to the display (*D0). It is alsc possible to: <ROUTL
*PR to filespec>

where ‘'filespec' is the user's selected name for a disk
file. The benefits of this capability should be obvious.
If your printer is out of commission, it is a simple matter
to route all program printer output to either the display or
to a disk file for later printout. 1f printer output is
wanted on bLeth the display and a disk file simultaneously,
the fcllowing command deoes the trick:

<LINK *DO to filespec> followed by:
<ROUTE *PR to *DO>

The symbols *PF and *DO are called "device specs" and
can be used in virtually identical fashion as the more
familiar disk "filespec." Almost anything done with a
filespec can also be done with a device spec.

The above ROUTE and LINK commands can also be employed
with both the Electric Pencil (by Michael Shrayer Software)
and SCRIPSIT (by Radio Shack). Patching routines for both
word processing programs are provided in VTOS 4.0 to enable
the device-independent capabilities. The patches are easily
installed following instructions provided in the little
green book.

Tt was mentioned above that the user can define special
device specs. For example:

<SET *CL TO RS232 (BAUD=300)>

In this example, a device spec is user-defined as *CL (CL =
Commmunications Line), and it utilizes a disk file called
RS232/DVR (included on the VTOS 4.0 disk. DVR is an
abbreviation for Driver, and 300 BAUD specifies the data
transmit rate to the *CL). After this device spec is
defined, any programming reference to *CL will automatically
utilize the RS232 program for its functional guidance.

For the user who desires a more extensive explanation
of "Device Indepence,” recent issues in PROG-80 (published
by TSE - The Software Exchange) contain some useful
explanations by Lance Micklus. I do not have these copies,

6/47

THE ALTERNATE SOURCE Vol. I, No. 6

so the reader will have to search 1980 back issues for these
reviews.

CHAINing

New and expanded CHAIlNing capabilities provide a unique
third mode of programming capability. By a third mode of
programming, I am suggesting that several logical and
specialized programming commands can be implemented in a
CHAIN file, which essentially makes the file into an
executable program. As an example, part of an actual CHAIN
file from the VTOS 4.0 disk is reproduced in figure one. I
added some line numbers to ease the task of following the
logic of the CHAIN file and explaining how it works.

Line 1 is simply a file title. Line 2 with the two
slash marks (//) is a decision making or functional command
for the system. If the command received is a BACKUP, the
comments on lines 3, 4,and 5, preceded with a period, are
displayed on the screen. Line 5 initiates the actual BACKUF
from drive zero.

If, instead, the SCRIPSIT PATCH routine was selected,
the CHAIN operation will bypass the BACKUP instruction and
continue down until it finds the "// IF SCRIP" logic as
found on line 23. Everything prior is ignored. Again,
decision logic is represented by the double slashes,
comments to the screen are preceded by a period, and the
actual operation to be performed is invoked by the command
line which is not preceded by any character. In this case
the executed command will be:

'PATCH SCRIPSIT/LC SCRIPSIT/FIX.

The SCRIPSIT patch does several things. High Memory
will be honored, hardcopy printout will be via the VTOS DCB
(Device Control Block) rather than via SCRIPSIT's own
printer driver code, and SCRIPSIT becomes capable of Device
Independence as described above. PENCIL can be patched in
the same way. Many additional 1logical expressions are
available for creating different CHAIN files. Some
self-evident examples include IF, ELSE; SET or RESET a
symbol or variable; FLASH a message to the screen; DELAY,
perhaps for user response; AND, OR, and NOR; and KEYIN,
which waits for a user keyboard input.

Perhaps it is clear now why I referred to the CHAIN
function as a "third mode" of programming. CHAIN programs
similar to the one described here can be developed to
perhaps control machinery with computer reference to clock
times, introduction of delays, and invoking specialized

6/48

THE ALTERNATE SOURCE vol. I, No. 6

control programs.

There is more potential here than I can cover in a
limited space, so experiment and see what happens.

SYSTEM CONFIGURATION

A 'SYSTEM' command enables the user to customize the
VIOS disk with several options: fast or slow CPU clock
(kits are available to speed up the 280 CPU clock from
several sources); large or small cursor, blinking or
non-blinking; type-ahead, on or off (very useful - keyboard
input can be done at any time, even during disk 1/0); lower
case driver, on or off; disable or enable any disk drive;
'"JKL' screen print option, same as that implemented by
Apparat's NEWDOS; variable disk head step rate; and disk
motor delay time before disk 1I/0 begins.

These options can be made into a permanent file with

the command =~ 'SYSTEM (SYSGEN)' - which, after it is
created, loads automatically when a BOOT or system RESET
occurs. This cormand actually creates a file named

CONFIG/SYS which executes automatically after the initial
BOOT or RESET and it patches the DOS resident code to

activate the user-selected options. The automatic
CONFIG/SYS file can be defeated during the BOOT process by
pressing the CLEAR key. Also, a different _ SYSTEM

configuration can be re-defined at any time.

The unique thing about this feature is that the system
customizing is done via a separate program file without a
requirement for making more permanent changes (or ZAPS as we
have come to know them) to the disk SYSTEM files. Not only
does this method retain the integrity of the disk SYSTEM
files, it also makes it very simple for the novice
programmer to implement the customizing features.
Consequently, there is less chance of accidently ZAPping
erroneous codes to the disk SYSTEM files.

OTHER NEW FEATURES

VTOS 4.0 boasts what is called a "symbiont" spooler. The
word symbiont derives from ‘“symbiosis," meaning "...the
intimate living together of two dissimilar organisms in a
mutually beneficial relationship."” Obviously, there are no
organisms involved in VTOS. Rather, the implication is that
the spooler is symbiotic with VTOS by virtue of its
integrated design. In short, there are no incompatibility
problems as might be encountered with the purchase of a
spooler sold by another distributor. -

6/49

THE ALTERNATE SOURCE Vol. I, No. 6

For the benefit of newcomers, a spooler permits running
the computer's printer simultaneously with the running of
another program, even allowing keyboard input while the
printer is doing its thing.

A "wild card" feature permits copying, killing, or
getting a DIRectory of files by class, such as /BAS, /SYS,
and /PCL. The file reference need not be only in the
filespec extension. The class might be, say, INV, which
would reference all files with INV imbedded, like INV1, INV2
and so on.

A MEMORY command can be implemented from DOS to define
the high memory limit available to any program. This is
similar to the NEWODS-80 HIMEM command.

DISK BASIC is not provided on the VTOS 4.0 disk.
Rather, the user must provide TRSDOS 2.3 BASIC, which, in
turn, is PATCHed for wuse with VTOS. Simple copying and
PATCHing instructions are provided in the documentation.

New BASIC features include: DOS commands which can be
issued by entering a CMD "command" (for example, CMD"DIR"
will call up a directory from BASIC. NEWDOS users had this
capability when HNEWDOS 2.1 was first released some time
ago) ; screen printing is supported; an OPEN"E" allows
appending to an existing file (another NEWDOS innovation);
variable length file support which makes BASIC file 1/0
considerably easier to rmmanage; "Run only" BASIC program
protection; and BASIC line renumbering.

SOME PROBLEM AREAS

Password Protection: VIOS 4.0 provides no simple
method of defeating the system's password protection. The
VTOS disk master password is given as "PASSWORD," and this
enables access to most VTOS 4.0 disk files. But attempting
access to another disk's password protected file just gets
"FILE ACCESS DENIED" printed on the screen. For those who
are interested, the VTOS disk password checking can be
defeated by wusing SUPERZAP (available from Apparat, the
producers of NEWDOS) to ZAP SYS2/SYS as follows:

5Ys2/sYs: 01/C9 (relative sector one, byte C9):
change: E1 28 2D
to: E1 18 2D

MEMORY (High$) Protect: VTOS 4.0 uses high memory for
many of its functions, but the user can define memory's
upper limit (similar to a BASIC MEMORY SIZE statement) so
as to protect his own programs which might also reside at

6/50

THE ALTERNATE SOURCL Vol. I, No. 6

the top. However, there is a problen. If you have a
progran, printer driver, or whatever which occupies top
memory, it will conflict with the SYSTEM (SYSGEN)
configuration file described akove.

For example, supprose it is desired to configure a
SYSTEM with a small, blinking cursor and & lower case
driver. The CONFIG/SYS file which is created to implement
these selections will automatically 1load to high memory
everytime the TRS-80 EOOTs up. If I intend to put a program
of my own in Ligh memory, I will have a problem because
after the BOOT or RISET, the VTOS lower case driver is
already up there. When I load my program, it will crash the
whole system because it clobbers the lower case driver.

The VTOS 4.0 documentatior implies, I think, that I
should be able to overcome this problem by somehow including
a HICH MEMORY statement within the SYSTEM configuration
defined above. But so far, I have not been able tc do this
successfully. The procedure is either inadequately covered
in the documentation, or it is a VTOS defect. Consequently,
if I intend to load any programs into top memory, it will be
necessary to bypass the automatic loading of the SYSTEM
configuration file by holding down the CLEAR key during the
BOOT or RESET. Subsequently, HIGH MEMORY is manually set
via the MEMORY command and my program in top memory will be
protected. If I then want the VTOS small, blinking cursor,
and its lower case driver, it will be necessary for me to
manually reconfigure with another SYSTEM configuration
operation. After setting up this new configuration, the
<SYSTEM (SYSGEN)> command will not create the new CONFIG/SYS
file as it should. Instead, the disk drive simply sits
there and spins continuously.

The VTOS documentation also says, and I quote, "User
may SYSGEN a custom VTOS system configuration containing
special I/0 drivers, device LINKing and ROUTEing, SPOOLing,
and DEBUG tasks, etc. which will be automatically loaded
during the BOOT process." Sounds good, but the
documemtation stops there; it does not explain how to do
this with the SYSGEN command. (The documentation does,
however, describe how to do this with a CHAIN operation
which is different than the SYSGEN operation).

That covers most of the special VIOS 4.0 features.
There are a few more goodies, and of course there are the
standard DOS commands with which we are all familiar.

It is my hope that the NEWDOS-80 and VTOS 4.0 reviews
presented in TAS will give readers some guidance on what to
expect from these systems. But keep in mind that most
likely I have either missed something useful or something

6/51

THE ALTERNATE SOURCE Vol. I, No. 6

problematical. Readers are encouraged to let the rest of us
know about your discoveries, both good and bad. Send your
comments in to TAS so that we all may share. Thanks.

FIGURE 1

1) ... VPOS 4.0 AUTO-INITIALIZED CHAINING FILE

2) //IF BACKUP

3) .THIS IS YOUR M-A-S-T-E-R VTOS 4.0 DISK,

4) .LET'S MAKE A" S-Y-S-T-E-M DISK TO RUN FROM,

5) . OK? ...

6) BACKUP :0

7) //STOP

8) //END

9) //IF BASIC

10) .HAVE YOU LOADED YOUR OWN COPY OF BASIC 2.2 OR 2.37?

11) //PAUSE <ENTER> WHEN READY

12) PATCH BASIC/CMD.BASIC BASIC/FIX

13) .OK, YOU ARE ALL FIXED UP NOW.

14) .ALSO, READ 'BASIC/DOC' FOR INFO ON TWO NEW BASIC
FEATURES

15) //EXIT

16) //END

17) //IF PENCIL

18) .HAVE YOU LOADED YOUR OWN COPY OF PENCIL ?

19) //PAUSE <ENTER> WHEN READY

20) PATCH PENCIL/CMD PENCIL/FIX

21) //EXIT

22) //END

23) //IF SCRIP

24) .HAVE YOU LOADED YOUR OWN COPY OF SCRIPSIT ?

25) .DO YOU WISH TO PATCH SCRIPSIT/UC OR SCRIPSIT/LC ?

26) //KEYIN 1= UC, 2= LC

27) //1

28) PATCH SCRIPSIT/UC SCRIPSIT/FIX

29) //EXIT

30) //2

31) PATCH SCRIPSIT/LC SCRIPSIT/FIX

32) //EXIT

33) //END

khkkkkkkkh %k kkdhkkhkkkk Ahkkhkkkkkk Khkhkkkkkdhi

The letter on your mailing 1label is indicative of which
issue your subscription expires with. "A" means this issue
will be your last, "B" means issue 7 will be your last, and
so forth. Persons wishing to can renew at any time; persons
expiring with issue #6 (this one!) will be receiving notice
and a renewal order blank within the next 3 to 4 weeks.
When renewing, it is best to indicate such, therefore
avoiding double mailings, etc. It would help the girls if
you let them know when you expire, too. Thanks!!

6/52

THE ALTERNATE SOURCE vVol, I, No. 6

Undocumented Z-80 Opcodes

By Daniel R. Lunsford

This is a complete list of the undocumented opcodes
executed by the Zilog Z-80 microprocessor. Use of these
opcodes can speed software development by making previously
cumbersome operations relatively easy.

The first group of instructions is represented by the
mnemonic "SLS", for which I am indebted to Allan Ashley of
Pasadena, California. The action of this instruction is to
shift its operand left and then set the least significant
bit. Alternatively, the operand is multiplied by 2 and
incremented. Any shift out of the high bit is put into the
Carry flag, and sign and parity are affected in the expected
manner. :

Mnemonic - Hex Code Octal Code

ex
SIS A CB 37 313 067
SLs B CB 30 313 060
SLs C CB 31 313 061
SIS D CB 32 313 062
SIS E CB 33 313 063
SLS H CB 34 313 064
SIS L CB 35 313 065
SLS (HL) CB 36 313 066
SLS (IX+d) DD CB dd 36 335 313 ddd 066
SLS (IY+d) FD CB dd 36 375 313 ddd 066

The next major groupings involve the 2%-80's twin index
registers, IX and IY. These registers are 16-bit pointer
registers and can be thought of as extensions of the HL
register pair in capabilities. However, unlike the HL pair,
the official documentation from Zilog did not divide the
index registers into two 8-bit registers each, with the
result that many desirable operations with the index
registers became remarkably clumsy to implement. It has
been discovered, however that the index registers are indeed
analogous to the HL pair, and are divided into two 8-bit
high and low registers. Opcodes are formed by attaching a
precursor byte (ODDH for an IX operation, and OFDH for an IY
operation) to an opcode belonging to the 8080 compatible
subset of the Z-80's instruction set.

In the following examples, HX refers to the register
formed by the upper 8 bits of the IX register, LX to the
lower 8 bits and similarly for HY and LY. The pattern of
generation should be obvious.

6/53

THE ALTERNATE SOURCE Vol. I, No. 6

Desired Object Standard
instruction code assembler

LD HX,A DD 67 DEFB ODDH
LD H,A

XOR LY FD AD DEFB OFDH
XOR L

INC HY FD 24 DEFB OFDH
INC H

ADD A,LX DD 85 DEFB 0DDH
ADD A,L

LD HX,LX DD 65 DEFB 0DDH
LD H,L

For those interested in timing, these extra
instructions are precisely four (4) T-states longer than the
corresponding H or L codes; e.g., timing for ADD 2,L is 4
T-states, while for ADD A,LX is 8 T-states.

The following is a complete list of the extended
opcodes guaranteed to run on any 2-80. Like all micro
chips, the Z-80 has "ghost" instructions which do one thing
on one chip, and another, radically different thing on
another. These extra index register instructions do not
fall into this class.

ADC A,HX ADD A,HX AND HX CP HX
ADC A,LX ADD A,LX AND LX CP LX
ADC A,HY ADD A,HY AND HY CP HY
ADC A,LY ADD A,LY AKND LY CP LY
DEC HX INC HX OR HX SBC A,HX
DEC LX INC LX OR LX SBC A,LX
DEC HY INC HY OR HY SBC A,HY
DEC LY INC LY OR HY SBC A,LY

SUB HX XOR HX

SUB LX XOR LX

SUB EY XOR HY

SUB LY XOR LY

The following is the LOAD group for the new registers.
Note the H and L cannot be loaded from or to the new
registers, and that things such as LD HX,LY are not
permissible.

LD HX,A LD HY,A LD A,HX LD A,HY
LD HX,B LD HY,B LD B,HX LD B,HY
LD HX,C LD HY,C LD C,HX LD C,HY
LD HX,D LD HY,D LD D,HX LD D,HY
LD HX,E LD HY,E LD E,HX LD E,HY

6/54

THE ALTERNATE SOURCE vol. I, No. 6

LD LX,A LD LY,A LD A,LX LD A,LY
LD LX,B LD LY,B LD B,LX 1D B,LY
LD LX,C LD 1¥Y,C b C,LX LD C,LY
LD LX,D LD LY¥,D 1D D,LX LD D,LY
LD LX,E LD LY,E LD E,LX LD E,LY

LD HX,N LD HX,LX

LD LX,N 1D LX,HX

LD HY,N 1D HY,LY

1D LY,N LD LY,HY

(Editor's Note: The Microsoft Macro-80 assembler allows
generation of all of the above missing index registers. Dan
has a macro available in 1listing form, with complete
documentation and a list of the instruction sets covered,
available for $10.00, Interested persons should write to
DarkStar Microsystems, 8725 La Riviera Drive, No. 68,
Sacramento, California, 95826 to obtain the listing.)

WE'RE HAVING A CONTEST!!

Big prizes!
§ Lots of excitement! !

(Maybe...)

...it all depends on you.
We had a problem deciding on a good theme
for our contest. Bill Brown finally came up with

o this idea: \

Who can come up with

THE BEST CONTEST IDEA???

The rules? The contest must involve the TRS-80.
The prize? Not a trip to Petersborough. Nope.
The big one is a lifetime subscription to TAS!
The deadline? December 31, 1980.
Submit your entries to: N
THE ALTERNATE SOURCE
1806 Ada Street
Lansing, Michigan 48910

\ PYPY-262-015 XML 041/-658 (£09)
SS8E0 HN ‘Weying may 012 xog

U Bu .*&sw\\«&&@. s%w\u.

HeM 0GL 10} 00'G6LS e Builels
a|gejiene SAYAAYIN piepuelS .

(S8ALIP %SIP ¢ ylim
08-S4l1 |l 13pow)
saInuIW G 10}

SHEM 00v 9pin0id |im eeee
uoI1esado snonuiuod

HEM 0GC pajedeocse

- 00°006$ uey) ssaj 04 1no
sa0b Jamod a8y} uaym uo
SwalsAs xsip 9 Jaindwod
Sdaay aABM BUIS 3]9A3 (9
pasu Jey) SwalSAS 8soy) Jojesee

.m.&.:
aAep| auIS
0§°>0 QQOOQOOQ

Duronposuy

6/56

THE ALTERMNATE SOURCE Vol. I, No. 6

Floating Point USR

By Mark T. Longley-Cook

Floating point variables can be transferred between
BASIC and machine language programs. The purpose of this
article is to point out two ways of doing this -- one fairly
cbvious and one not so obvious. Finally, a simple method of
transferring 7 bytes (less than one bit) of information will
be identified.

The more obvious method of transferring variables is to
use USR(VARPTR(X)). The low-memory byte address of X «can
then be accessed into HL in the machine language program by
CALLing OA7FH. Saving HL will permit storing a new floating
point variable as X prior to RETurning to BASIC. This
method can be used to advantage when X is an array element,
as then other elements in the array can be accessed simply.
There are some shortcomings. The returned variable must be
the same type as that passed; X cannot be an expression; the
value of the USR function will be wuseless if it has no
significance; VARPTR must not be forgotten when typing the
program; and the machine language program is complicated by
not having the variable where it is most useful for floating
point operations, that is, in 1locations 411DH to 4124H.
These locations serve as a floating point accumulator for
ROM routines.

A new, and in many ways better, method for transferring
floating point variables is based on the normal entry points
for transferring integers into and out of USR routines
(OA7FH and 0A9AH). The first location is also the entry for
the BASIC function CINT. The second location is also the
entry for a subroutine to 1load the floating point
accumulator with an integer in HL. Try the following
two-liner and you will have an idea of what I mean.

10 POKE 16526,67: POKE 16527,0 or DFEFUSR = 67
20 INPUT X: PRINT USR(X): GOTO 20

Location 67 (43H) in ROM contains O0C9H, an unconditional
RETurn instruction. Inputting any value will result in the
computer parrotting that value back. The machine language
program can be as complex as desired. After accessing X in
the floating point accumulator, it can perform ROM or
non-ROM floating point operations. It can also return a
floating point variable to BASIC by storing it in the
accumulator, setting the type flags in location 40AFH if
necessary. For example, here is a quick and simple (no
overflow checks) multiply/divide-by-two routine for single
or double precision variables.

6/57

THE ALTERNATE SOURCL Vol. I, No. 6

LD HL,4124H ; EXPONENT BYTE ADDRESS

LD A, (HL) ; EXPONENT TO A

OR A ;TEST FOR ZLRO

RLT A ; AND 1F SO, RETURN

INC (HL) ; MULTIPLY BY TWO
(or...) DrcC (HL) ;DIVIDE BY TWO

RET

of course, *2 or /2 is simpler, but not as quick!

Finally, there is an alternate way of transferring
several bytes of information to the machine language
program. The normal method is to POKE the information into
RAM, but an easier way is as follows. Let I, J, X, L, M, N,
O be seven numbers between 0 and 255 ("O" can only go to
127). Then set VA = 36028797018963968.
USR(Z#+I+256* (J+256* (K+256*(L+ ...)))) places the following
informaticn in the floating point accumulator:

LOCATION CONTENTS

4 11DH
411EH
411FH
41200
etc. e

RO

C.

The variable "O" is restricted to 127 because the high
order bit in location 4123H is the sign bit of the floating
point nurber. Location 4124H will contain a constant
exponent of 184, 1If less than seven bytes is required, the
inner parenthesis will collapse, making typing the
expression simpler. If the ranges required exceed 255, the
change is simple and can best be shown by example.
USR(Z#+I+65536*(J+ ...)) will reserve 411DH and 411EH for I
(in reversed LSB/MSB order of course). Here 65536 is the
square of 256. What is Z#? It is two to the 55th power,
and 55 is 7*8-1 or the number of bits that are transferred.
But don't try to calculate Z4 in the program; the BASIC
routines are not set up to handle that sort of precision.
z4 forces alignment of integers, like "I" above, with its
least significant bit for easy decoding. Transferring
information back to BASIC using this scheme is not quite so
simple, but it can be done. The machine language program
should set the type flags (40AFH) to 08H, set the exponent
(4124H) to 184 (OB8H) and reset the high order bit location
4123H. The BASIC program then subtracts Z# from the USR
function. The following statements-are.typical of what is
required:

10 DEFINT I-O: DEFDBL T-2: Y=USR(...)=36028797018963968
20 T =FIX(Y/256): I =Y-256*T: Y =FIX(T/256): J =T-256*Y

6/58

THE ALTERNATE SOURCE Vol. I, No. 6

Alternatively, a FCOR-NEXT loop might be used (with an extra
statement Y=T) assigning the bytes to an integer array.

In summary, a new, straightforward method of passing
floating point numbers between BASIC and machine 1language
exists. What 1is done with the number once in the machine
language program depends on your manipulation of £floating
point ROM routines -- a subject too large and too complex to
cover here. The only disadvantage the procedure has is that
more +than one floating point number cannot be passed at
once, as arrays indirectly can with VARPTR. Additionally, a
multiple-byte transfer scheme has also been described. In
specific applications, these methods can be extended as
desired.

IPACKAGE DEAL
OF THE MONTH
14

10 DISKETTES AND Afic
DISK LIBRARY PRGRM.

We'd Ilke to introduce you to a new line
of soft sector, 5% inch disketies for the
[TRS-80. They're manufactured by
Nashua, the same pany who's been
servicing mainframe computers for
years! We've have been testing
them for over 3 months with error
free resuits.

DEAL #14 This package contains | box
{10) of Nashua diskettes. plus on one of your
diskettes you will ﬁnd our powerfull)lSKLlB ‘

OUT OF MEMORY ERRORS

with

VARKEEP

e e
A ANACEMENT UTILITY

§ @ Chain programs without losing veriables

® Change the amount of string space
without losing variables

® Redimension arrays

© Reclaim memory from variables no
longer needed.

@ Protect variables from deletion when
making program changes

ADD
FOUR POWERFUL COMMANDS
TO YOUR BASIC

LEVEL II OR DOS

$16.95 diskette tape $14.95

® 517/485-0344 517/487-3358 @

COD/MC/VISA
MC/VISA CARD 4% ADDITIONAL CHARGE
To order your copy. Call or Send name, address
and 816 .95 for disk or $14.95 for tape, plus
.75¢ shipping to:
THE ALTERNATE SOURCE

1806 ADA STREET
IFL% LANSING, MI 48910

fautomatically reads
creates a master file of your programs 1§

prints a master listing to make finding§
programs easier.

3 |DISKETTES

DISKLIB

‘TOTAL LIST PRICE .
less DEAL #14

CITY.STZIP
CHARGE CARD ¥ |
" THE ALTERNATE Sounrce i
JE 1806 ADA STHEET™ 1"
LANSING, M1 48910
517/485-0344
517/487-3358

6/59

THE ALTERNATE SOURCE vol. I, No. 6

SPEEDING UP A SEQUENTIAL SEARCH

By Joni M. Kosloski

(Before we begin, proper credit should be given to Donald
Knuth. The techniques described within this article were
obtained from reading Volume 3, Chapter 6 of "The 2rt of
Computer Programming, Sorting and Searching, which is
written by Donald Knuth and published by Addison Wesley.)

"Start at the beginning, test each record till you find
a match, then stop." In the English language, that just
about sums up a sequential search. And it's relatively easy
in the Basic language, too, except that some methods of
sequential searching are faster than others. Since
searching is the most time consuming part of many programs,
the substitution of & good search method for a'bad onée"can
often lead to a substantial increase in speed. This article
will describe three different methods, discuss differences
and attempt to explain the process of speeding up the
search.

PROGRAM ONE

In all of the following examples, we are assuming that
we have a set of data records stored in the array "R", which
are labeled R(1), R(2), R(3)....R(N) where "N" is the total
number of data records available. These records, in turn,
each have associated with them a set of unique keys, which
we will use to locate the correct record. The keys are
K(1), K(2), K(3)....K(N). The variable "I" will be used as
a counter, the variable "S" as a switch to indicate whether
or not we have found the record for which we are searchlng
and the variable "K" is the key value for which a match is
being sought.

With that in mind, the most obvious search algorithm is
as follows:

100 I = 1
110 IF K = K(I) THEN S = 1: PRINT "FOUND IT!": END
1201 =1 + 1
130 IF I <= N THEN GOTO 100
ELSE S = 0: PRINT "IT'S NOT HERE!“: END

Note that the program can end in one of two ways -- by
finding the right key and terminating, or by searchlng the
entire file, deciding that the right key is missing, and
terminating unsuccessfully. If the program finds the match

6/60

THE ALTERNATE SOURCE Vol. I, No. 6

it's looking for, "S" will be equal to "1"; if not, then
zero.

The running time of this program depends on two things;
the number of comparisons being performed and whether the
search was successful. Referring to Donald EKnuth, the
formula for computing the processing time of the above
program is:

5*C-2%*5+ 3

where "C" is equal to the number of comparisons being made
and "S" is either zero or one, depending on whether a match
is found. 1In a successful search, where "K" was found to be
equal to "K(I)", "I" is the number indicating the record
position within the file and will also be equal to the
number of comparisons being made. So we can use "I" in
place of "C" in the above formula. "S" will be "1" because
we did find the record we were looking for. Knowing this,
the total units of time can be determined to be:

5 * I~ 2% 14+ 3
or
5I + 1 (units of time)

If the search was NOT successful, "I" would equal "N",
the total number of records (having searched them all), and
"s" would be equal to "0". Using the same algorithm, an
unsuccessful search would take:

5 * N=-2%*0 + 3
or
SN + 3 (units of time)

Let's see if we can't speed up this 'searching program'
just a little. Noting the original formula, it's easy to
determine that the number of comparisons being made has a
great deal to do with how much time is being consumed.

PROGRAM TWO

The only difference between Program One and Program Two
is that we have inserted a 'dummy' record at the end of our
file. Note the following code, then 1I'll explain the
purpose of the 'dummy' record:

100 I = 1: K(N+1) = K

110 IF K = K(I) THEN 130

120 I =I + 1: GOTO 110

130 IF I <= N THEN S = 1: PRINT "FOUND IT!": END
ELSE § = 0: PRINT “IT'S NOT HERE!": END

6/61

THE ALTERNATE SOURCE vol. I, No. 6

ELSE
S = 0: PRINT "IT'S NOT HERE!": END

If you go back and look at Program One, you'll find
that TWO comparisons are made for each record being
searched. The first comparison will determine if it is the
record we are looking for, the second comparison will
determine whether or not it's the last record in the file.

Now note that in Program Two, only ONE "IF" statement
is being executed for each record in the file. What we have
accomplished is cutting in half the number of comparisons
being performed. The only problem with arranging the
statements in this order is that we must FCRCE at match when
we reach the end of the file, otherwise we'd be hung up in
ar endless loop of execution or the program would terminate
with some kind of error. This is where the dummy record
comes in. If we have 20 records in our file, then we make
the the 21st record our dummy record. "N" would still equal
20, the actual number of records available. So when we set
"K(N+1)" equal to "K" in line 100, what we're doing is
forcing a match in line 110 when we reach record 21 (end of
file).

Cutting the number of comparisons in half makes use of
an important "speed-up" principle: when an inner loop of a
program tests for two or more conditions, an attempt should
be made to reduce it to just one condition.

Making use of the same variables "C" and "S" from
Program One, the new formula for determining the processing
time is as follows:

4 * C -4 *8S + 10
Again, assuming our search was successful, "C" will be equal
to "I" and "S" will be equal to "1". Total elapsed time for
a successful search using Program Two computes at:
4 * I -4 % 1+ 10
or
4I - 6 (units of time)

Can we speed it up even more?

PROGRAM THREE
e g e
Let's take a look at the following program listing,
which still assumes the 'dummy' record at end-of-file:

100 K(N+1) = K: I = -1

6/62

THE ALTERNATE SOURCE Vol. I, No. 6

110 I =I + 2
120 IF K = K(I) THEN 140
130 IF K <> K(I+1) THEN 110: I = I + 1
140 IF I <= N
THEN S = 1: PRINT "FOUND IT!": END
ELSE
S = 0: PRINT "IT'S NOT HERE!": END

In line 100, we again force our dummy record to be
equal to "K", thus terminating the routine at the end of the
file. We also set "I" equal to "-1" because we're going to
be increasing each step of our loop by 2 and we want to
begin the search with record number one. Line 120 will test
record one for a match; if found, it drops to line 140 which
terminates the routine. If it is not a match, line 130 will
test record "I+1", or record three in this instance.
(Please note that line 130 is NOT increasing "I", it is just
adding "1" for testing purposes!) If line 130 doesn't find
a match, then back to line 110 for an increment. If it does
find a match, then the value of "I" must be increased by one
to reflect the actual record being tested before proceeding
to line 140 for termination.

By using this set of instructions, we have duplicated
the inner loop. 1In doing this, we have eliminated one half
of our "I=I+1" instructions. You'll probably notice that
there are two "IF" statements in the above coding, but each
loop is testing TWO records, not just one.

So what modifications have we made to our original
Program One? In Program Two, we eliminated one half of our
"IF" statements. Ir Program Three, we eliminated one half
of our "I=I+1" instructions. These two changes have
resulted in a saving of a full 30% processing time when
compared to the original Program One!

Ahkkhkhkhhkhkk Rk Rk Ak hkhkrh R

TAS is published by Joni M. Kosloski and Charley Butler
at 1806 Ada Street, Lansing, MI, 48910. Subscriptions are
$9.00 per year USA; $12.00 per year Canada and First Class;
and $15.00 per year Foreign. All monies must be in US
currency. Subscriptions may be addressed to the above, as
well as advertising rate inquiries. We actively solicit
meaningful articles and information relating to Tandy's
TRS-80, and compensate for each article published. Call or
write for more info. The entire contents of this issue are
Copyright (c) 1980 by The Alternate Source unless copyright
notice is declared by individual authors.

REREARKRAR KRR AR AR R ARAA

6/63

AFTERWARD FOR ISSUE 6

I had never seen any reference to undocumented Z-80 opcodes prior to
Dan Lunsford’s article in this issue, thus I believe it to be a first.

This is our last issue printed by a “Quick Printer”, mainly because of
inconsistent print quality.

We have had follow up articles to the “Make Your Machine Language
Programs Relocatable”. The subject sparked quite a bit of interest -- and
criticism.

I guess my all time goal is to get William Barden and Jesse Bob Overholt
to collaborate on an article. ”Bit Kickin” doesn’t bring out Jesse Bob the
way he “really is”. Another Way to Install Machine Language” has got to
be one of my all time favorites. If they ever do team up, watch out world!

j§ 14.95

'THE ALTERNATE SOURCE

1806 ADA STREET
LANSING, MICHIGAN 48910
TELEPHONE (517) 487-3358

i’-.. . o T — - R — =

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf
	273.pdf
	274.pdf
	275.pdf
	276.pdf
	277.pdf
	278.pdf
	279.pdf
	280.pdf
	281.pdf
	282.pdf
	283.pdf
	284.pdf
	285.pdf
	286.pdf
	287.pdf
	288.pdf
	289.pdf
	290.pdf
	291.pdf
	292.pdf
	293.pdf
	294.pdf
	295.pdf
	296.pdf
	297.pdf
	298.pdf
	299.pdf
	300.pdf
	301.pdf
	302.pdf
	303.pdf
	304.pdf
	305.pdf
	306.pdf
	307.pdf
	308.pdf
	309.pdf

